PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polygonal micro-whirlpools induced in ferrofluids

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We report on the observation of the polygonal whirlpools in the thin layer of ferrofluid under illumination with a laser beam carrying optical vortex and in the presence of a vertical magnetic field. This kind of structures have attracted attention after discovering a hexagonal storm in Saturn’s atmosphere. Our polygonal whirlpools were created in a closed system (no free surfaces) in micro-scale (whirlpool diameter <20 μm) by the use of holographic optical tweezers. The polygonal shape was changed by varying the magnetic field strength or value of the optical vortex topological charge.
Czasopismo
Rocznik
Strony
309--316
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
  • Wrocław University of Technology, Department of Optics and Photonics, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Wrocław University of Technology, Department of Optics and Photonics, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Wrocław University of Technology, Department of Optics and Photonics, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Technology, Department of Optics and Photonics, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Institute of Physics, University of Zielona Góra, Szafrana 4a, 65-069 Zielona Góra, Poland
Bibliografia
  • [1] GODFREY D.A., A hexagonal feature around Saturn’s north pole, Icarus 76(2), 1988, pp. 335–356.
  • [2] BAINES K.H., MOMARY T.W., FLETCHER L.N., SHOWMAN A.P., ROOS-SEROTE M., BROWN R.H., BURATTI B.J., CLARK R.N., NICHOLSON P.D., Saturn’s north polar cyclone and hexagon at depth revealed by Cassini/VIMS, Planetary and Space Science 57(14–15), 2009, pp. 1671–1681.
  • [3] ALLISON M., GODFREY D.A., BEEBE R.F., A wave dynamical interpretation of Saturn’s polar hexagon, Science 247(4946), 1990, pp. 1061–1063.
  • [4] BARBOSA AGUIAR A.C., READ P.L., WORDSWORTH R.D., SALTER T., HIRO YAMAZAKI Y., A laboratory model of Saturn’s North Polar Hexagon, Icarus 206(2), 2010, pp. 755–763.
  • [5] JANSSON T.R.N., HASPANG M.P., JENSEN K.H., HERSEN P., BOHR T., Polygons on a rotating fluid surface, Physical Review Letters 96(17), 2006, article 174502.
  • [6] TOPHØJ L., MOUGEL J., BOHR T., FABRE D., Rotating polygon instability of a swirling free surface flow, Physical Review Letters 110(19), 2013, article 194502.
  • [7] SCHERER C., FIGUEIREDO NETO A.M., Ferrofluids: properties and applications, Brazilian Journal of Physics 35(3A), 2005, pp. 718–727.
  • [8] PHILIP J., LASKAR J.M., Optical properties and applications of ferrofluids – a review, Journal of Nanofluids 1(1), 2012, pp. 3–20.
  • [9] HOFFMANN B., KÖHLER W., Reversible light-induced cluster formation of magnetic colloids, Journal of Magnetism and Magnetic Materials 262(2), 2003, pp. 289–293.
  • [10] KELLNER R.R., KÖHLER W., Short-time aggregation dynamics of reversible light-induced cluster formation in ferrofluids, Journal of Applied Physics 97(3), 2005, article 034910.
  • [11] ZI-MING MENG, HAI-YING LIU, WEI-REN ZHAO, WEI ZHANG, HAI-DONG DENG, QIAO-FENG DAI, LI-JUN WU, SHENG LAN, ACHANTA VENU GOPAL, Effects of optical forces on the transmission of magnetic fluids investigated by Z-scan technique, Journal of Applied Physics 106(4), 2009, article 044905.
  • [12] SUGIYAMA T., YUYAMA K., MASUHARA H., Laser trapping chemistry: from polymer assembly to amino acid crystallization, Accounts of Chemical Research 45(11), 2012, pp. 1946–1954.
  • [13] CURTIS J.E., KOSS B.A., GRIER D.G., Dynamic holographic optical tweezers, Optics Communications 207(1–6), 2002, pp. 169–175.
  • [14] FARRÉ A., VAN DER HORST A., BLAB G.A., DOWNING B.P.B., FORDE N.R., Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers, Journal of Biophotonics 3(4), 2010, pp. 224–233.
  • [15] GAHAGAN K.T., SWARTZLANDER G.A., Optical vortex trapping of particles, Optics Letters 21(11), 1996, pp. 827–829.
  • [16] MCGLOIN D., GARCÉS-CHÁVEZ V., DHOLAKIA K., Interfering Bessel beams for optical micromanipulation, Optics Letters 28(8), 2003, pp. 657–659.
  • [17] FURUKAWA H., YAMAGUCHI I., Optical trapping of metallic particles by a fixed Gaussian beam, Optics Letters 23(3), 1998, pp. 216–218.
  • [18] YI ZHANG, GU C., SCHWARTZBERG A.M., SHAOWEI CHEN, JIN Z. ZHANG, Optical trapping and light induced agglomeration of gold nanoparticle aggregates, Physical Review B 73(16), 2006, article 165405.
  • [19] DENNIS M.R., O’HOLLERAN K., PADGETT M.J., Singular optics: optical vortices and polarization singularities, [In] Progress in Optics, [Ed.] Wolf E., Vol. 53, 2009, pp. 293–363.
  • [20] HE H., FRIESE M.E.J., HECKENBERG N.R., RUBINSZTEIN-DUNLOP H., Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity, Physical Review Letters 75(5), 1995, p. 826.
  • [21] PADGETT M., Light’s twist, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, 2014, article 20140633.
  • [22] ZAPOTOCZNY B., GUSKOS N., KOZIOŁ J.J., DUDEK M.R., Preparation of the narrow size distribution USPIO in mesoporous silica for magnetic field guided drug delivery and release, Journal of Magnetism and Magnetic Materials 374, 2015, pp. 96–102.
  • [23] BROJABASI S., MUTHUKUMARAN T., LASKAR J.M., PHILIP J., The effect of suspended Fe3O4 nanoparticle size on magneto-optical properties of ferrofluids, Optics Communications 336, 2015, pp. 278–285.
  • [24] MASAJADA J., BACIA M., DROBCZYŃSKI S., Cluster formation in ferrofluids induced by holographic optical tweezers, Optics Letters 38(19), 2013, pp. 3910–3913.
  • [25] BARTKIEWICZ S., MINIEWICZ A., Whirl-enhanced continuous wave laser trapping of particles, Physical Chemistry Chemical Physics 17(2), 2015, pp. 1077–1083.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e65f22f0-c9dd-46cb-a49f-1c6fd27d9cf0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.