PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Outlier Detection by Interaction with Domain Experts

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present a method for improving the detection of outlying Fire Service's reports based on domain knowledge and dialogue with Fire & Rescue domain experts. The outlying report is considered as an element which is significantly different from the remaining data. We follow the position of Professor Andrzej Skowron that effective algorithms in data mining and knowledge discovery in big data should incorporate an interaction with domain experts or/and be domain oriented. Outliers are defined and searched on the basis of domain knowledge and dialogue with experts. We face the problem of reducing high data dimensionality without loosing specificity and real complexity of reported incidents. We solve this problem by introducing a knowledge based generalization level intermediating between analyzed data and experts domain knowledge. In our approach we use the Formal Concept Analysis methods for both generation of the appropriate categories from data and as tools supporting communication with domain experts. We conducted two experiments in finding two types of outliers in which outlier detection was supported by domain experts.
Wydawca
Rocznik
Strony
529--544
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Section of Computer Science, The Main School of Fire Service, Słowackiego 52/54, 01-629 Warsaw, Poland
  • Faculty of Mathematics, Informatics and Mechanics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland
Bibliografia
  • [1] Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dn. 29 grudnia 1999 r. ws. szczegółowych zasad organizacji Krajowego Systemu Ratowniczo-Gaśniczego., Dz.U.99.111.1311 §34 pkt. 5 i 6.
  • [2] Bohm, C., Faloutsos, C., Plant, C.: Outlier-robust clustering using independent components, Proceed. of SIGMOD Conference, ACM, 2008.
  • [3] Bundesamt fur Bevölkerungsschutz und Katastrophenhilfe: Feuerwehr-Dienstvorschrift 100 Führung und Leitung im Einsatz : Führungssystem, FwDV 100 Stand: 10. Marz 1999.
  • [4] Elzinga, P., Poelmans, J., Viaene, S., Dedene, G., Morsing, S.: Terrorist threat assessment with formal concept analysis, Intelligence and Security Informatics (ISI), 2010 IEEE International Conference on, IEEE, 2010.
  • [5] Fawcett, T., Provost, F.: Activity monitoring: Noticing interesting changes in behavior, Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, 1999.
  • [6] Gabrilovich, E., Markovitch, S.: Computing Semantic Relatedness using Wikipedia-based Explicit Semantic Analysis, Proc. of The 20th Int. Joint Conf. on Artificial Intelligence, Hyderabad, India, 2007.
  • [7] Ganter, B., Wille, R.: Formal concept analysis, Springer Berlin, 1999.
  • [8] Graeger, A., Cimolino, U., de Vries, H., Sümersen, J.: Einsatz-und Abschnittsleitung: Das Einsatz-Fuhrungs- System (EFS), Ecomed Sicherheit, 2009.
  • [9] Hodge, V., Austin, J.: A survey of outlier detection methodologies, Artificial Intelligence Review, 22(2), 2004, 85-126.
  • [10] Holmes, M., Wang, Y., Ziedins, I.: The application of data mining tools and statistical techniques to identify patterns and changes in fire events, 2009.
  • [11] Jankowski, A., Skowron, A.: Wisdom technology: A rough-granular approach, Bolc Festschrift (A. M. M. Marciniak, Ed.), Springer, Heidelberg, 2009.
  • [12] Janusz, A., Swieboda, W., Krasuski, A., Nguyen, H. S.: Interactive Document Indexing Method Based on Explicit Semantic Analysis, Rough Sets and Current Trends in Computing, 2012, 156-165.
  • [13] Japkowicz, N., Myers, C., Gluck, M.: A novelty detection approach to classification, International Joint Conference on Artificial Intelligence, 14, Lawrence Erlbaum Associates LTD, 1995.
  • [14] Krasuski, A., Janusz, A.: Semantic Tagging of Heterogeneous Data: Labeling Fire&Rescue Incidents with Threats, Proceed. of the Federated Conference on Computer Science and Information Systems, IEEE, 2013.
  • [15] Krasuski, A., Krenski, K., Lazowy, S.: A Method for Estimating the Efficiency of Commanding in the State Fire Service of Poland, Fire Technology, 48(4), 2012, 795-805.
  • [16] Krasuski, A., Slezak, D., Krenski, K., Lazowy, S.: Granular Knowledge Discovery Framework, New Trends in Databases and Information Systems, 2012, 109-118.
  • [17] Nguyen, T. T.: Outlier Detection: An Approximate Reasoning Approach, Proceed. of RSEISP'2007 (M. Kryszkiewicz, J. F. Peters, H. Rybinski, A. Skowron, Eds.), LNCS, 4585, Springer, 2007.
  • [18] Pei, J.: Some New Progress in Analyzing and Mining Uncertain and Probabilistic Data for Big Data Analytics, Proceed. Of RSKT'2013 (P. Lingras, et. al., Eds.), LNCS,, Springer, 2013.
  • [19] Poelmans, J., Elzinga, P., Dedene, G., Viaene, S., Kuznetsov, S.: A concept discovery approach for fighting human trafficking and forced prostitution, Conceptual Structures for Discovering Knowledge, 2011, 201214.
  • [20] Poelmans, J., Elzinga, P., Viaene, S., Van Hulle, M., Dedene, G.: Gaining insight in domestic violence with emergent self organizing maps, Expert systems with applications, 36(9), 2009, 11864-11874.
  • [21] Skowron, A., Stepaniuk, J.: Information granules: Towards foundations of granular computing, International Journal of Intelligent Systems, 16(1), 2001, 57-85.
  • [22] Skowron, A., Szczuka, M.: Toward interactive computations: A rough-granular approach, Commemorative Volume to Honor Ryszard Michalski (J. Koronacki, et. al., Eds.), LNCS, 5070, Springer, Heidelberg, 2009.
  • [23] Skowron, A., Wasilewski, P.: Information systems in modeling interactive computations on granules, Theoretical Computer Science, 412(42), 2011, 5939-5959.
  • [24] Skowron, A., Wasilewski, P.: Interactive information systems: Towards Perception Based Computing, Theoretical Computer Science, 454(42), 2012, 240-260.
  • [25] Stawicki, S., Slezak, D.: Recent Advances in Decision Bireducts: Complexity, Heuristics and Streams, Proceed. ofRSKT'2013 (P. Lingras, et. al., Eds.), LNCS, Springer, 2013.
  • [26] Wille, R.: Restructuring lattice theory, Ordered Sets (I. Rival, Ed.), Reidel, Dodrecht, 1982.
  • [27] Xiangxin, L.: Rational judging method of fire station layout based on Data Mining, 2nd IEEE International Conference on Emergency Management and Management Sciences (ICEMMS), 2011, IEEE, 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6513892-4876-4dc8-84b8-eccdf880e2be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.