Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This review aims to demonstrate how biochar, derived from agricultural wastes can improve soil physical and chemical properties, reduce greenhouse gas emissions, and contribute to increased agricultural productivity and long-term sustainability. In this review, we analyze the effects of biochar on various soil parameters, including soil bulk density, soil porosity, microbial activity, nutrient content, cation exchange capacities, pH, water holding capacity, and infiltration rates. The results highlight the practical importance of utilizing biochar to improve soil physical and chemical properties. Additionally, the results show that biochar is a practical strategy for improving the growth and yield of crops and reducing greenhouse gas emissions. It can be concluded that biochar can significantly contribute to sustainable agriculture and food security in Jordan by improving soil health, enhancing water retention, and mitigating salinity.
Czasopismo
Rocznik
Tom
Strony
190--202
Opis fizyczny
Bibliogr. 99 poz., rys., tab.
Twórcy
autor
- National Agricultural Research Center (NARC), P.O. Box 639, Baq’a, 19381, Jordan
- Innovations & Business Development, Fresh Del Monte, Amman, Jordan
- De L’Ora, Bio, Amman, Jordan
autor
- National Agricultural Research Center (NARC), P.O. Box 639, Baq’a, 19381, Jordan
autor
- National Agricultural Research Center (NARC), P.O. Box 639, Baq’a, 19381, Jordan
autor
- National Agricultural Research Center (NARC), P.O. Box 639, Baq’a, 19381, Jordan
autor
- National Agricultural Research Center (NARC), P.O. Box 639, Baq’a, 19381, Jordan
autor
- National Agricultural Research Center (NARC), P.O. Box 639, Baq’a, 19381, Jordan
Bibliografia
- 1. Adekanye, T., Dada, O., Kolapo, J. 2022. Pyrolysis of maize cob at different temperatures for biochar production: Proximate, ultimate and spectroscopic characterisation. Research in Agricultural Engineering, 68(1).
- 2. Adekiya, A.O., Agbede, T.M., Ejue, W.S., Aboyeji, C.M., Dunsin, O., Aremu, C.O., Adesola, O.O. Owolabi A.O., Ajiboye G.O., Okunlola O.F. 2020. Biochar, poultry manure and NPK fertilizer: sole and combine application effects on soil properties and ginger (Zingiber officinale Roscoe) performance in a tropical Alfisol. Open Agriculture, 5(1), 30–39.
- 3. Aissaoui, M.H., Trabelsi, A.B.H., Abidi, S., Zaafouri, K., Haddad, K., Jamaaoui, F., Leahy J.J., Kwapinski, W. 2023. Sustainable biofuels and biochar production from olive mill wastes via co-pyrolysis process. Biomass Conversion and Biorefinery, 13(10), 8877–8890.
- 4. Albalasmeh, A., Mohawesh, O., Alqudah, A., Unami, K., Al-Ajlouni, Z., Klaib, A. 2023. The potential of biochar application to enhance soil quality, yield, and growth of wheat and barley under rainfed conditions. Water, Air, & Soil Pollution, 234(7), 463. https://doi.org/10.1007/s11270-023-06493-4
- 5. Aljardah, A.A., Khashroum, A.O., Shawaqfeh, S.S. 2023. Effect of using biochar and compost on soil properties and on mitigation of climate change impacts: A case study from Jordan. IOSR Journal of Agriculture and Veterinary Science 16(10), 23–39. https://doi.org/10.9790/2380-1610013239
- 6. Alkharabsheh, H.M., Seleiman, M.F., Battaglia, M.L., Shami, A., Jalal, R.S., Alhammad, B.A., Almutairi, K.F., Al-Saif A.M. 2021. Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agron 11, 993. doi:10.3390/agronomy11050993
- 7. Amanullah, Y. M., Khalid, S., Elshikh, M.S., Akram, H.M., Imran, A., 2022. Phenology, growth, productivity, and profitability of mungbean as affected by potassium and organic matter under water stress vs. no water stress conditions. J Plant Nutr., 45(5), 629–650.
- 8. Ammari, T.G., Tahhan, R., Abubaker, S., Al-Zu’bi, Y., Tahboub, A., Ta’Any, R., Abu-Romman S., AlManaseer N., Stietiya, M.H. 2013. Soil salinity changes in the Jordan Valley potentially threaten sustainable irrigated agriculture. Pedosphere, 23(3), 376–384.
- 9. Arif, M., Ali, S., Ilyas, M., Riaz, M., Akhtar, K., Ali, K., Wang, H., 2021. Enhancing phosphorus availability, soil organic carbon, maize productivity and farm proftability through biochar and organic–inorganic fertilizers in an irrigated maize agroecosystem under semi-arid climate. Soil Use Mgt., 37(1), 104–119.
- 10. Boraah, N., Chakma, S., Kaushal, P. 2023. Optimum features of wood-based biochars: A characterization study. Journal of Environmental Chemical Engineering, 11(3), 109976.
- 11. Borhannuddin Bhuyan, M.H.M., Hasanuzzaman, M., Nahar, K., Mahmud, J.A., Parvin, K., Bhuiyan, T.F., Fujita, M. 2019. Plants behavior under soil acidity stress: Insight into morphophysiological, biochemical, and molecular responses. Plant abiotic stress tolerance: Agronomic, molecular and biotechnological approaches, 35–82.
- 12. Burrell, L.D., Zehetner, F., Rampazzo, N., Wimmer, B., Soja, G. 2016. Long-term effects of biochar on soil physical properties. Geoderma, 282, 96–102. https://doi.org/10.1016/j.geoderma.2016.07.019
- 13. Butnan, S., Deenik, J.L., Toomsan, B., Antal, M.J., Vityakon, P. 2015. Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma, 237, 105–116.
- 14. Castellini, M., Giglio, L., Niedda, M., Palumbo, A.D., Ventrella, D. 2015. Impact of biochar addition on the physical and hydraulic properties of a clay soil. Soil and Tillage Research, 154, 1–13.
- 15. Chan, K.Y., Van Zwieten, L., Meszaros, I., Downie, A., Joseph, S. 2008. Agronomic values of greenwaste biochar as a soil amendment. Soil Res., 45(8), 629–634. https://doi.org/10.1071/sr07109.
- 16. Chen, W.H., Hsu, H.J., Kumar, G., Budzianowski, W.M., Ong, H.C. 2017. Predictions of biochar production and torrefaction performance from sugarcane bagasse using interpolation and regression analysis. Bioresource technology, 246, 12–19.
- 17. Chen, Xi., Yang, S-H., Wei Jiang, Z., Ding, T., Sun, X., 2021. Biochar as a tool to reduce environmental impacts of nitrogen loss in water-saving irrigation paddy f ield. Journal of Cleaner Production, 290, 125811.
- 18. Dai, Z., Xiong, X., Zhu, H., Xu, H., Leng, P., Li, J., Tang C., Xu, J. 2021. Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes. Biochar, 3, 239–254.
- 19. Davis, A., Franklin, J. 2017. Impact of Olive Mill Waste Biochar on Soil Properties and Plant Growth. Journal of Environmental Management, 198, 21–29.
- 20. Dey, D., Gyeltshen, T., Aich, A., Naskar, M., Roy, A. 2020. Climate adaptive crop-residue management for soil-function improvement; recommendations from f ield interventions at two agro-ecological zones in South Asia. Environmental research, 183, 109164.
- 21. Dokoohaki, H., Miguez, F.E., Laird, D., Horton, R., Basso, A.S. 2017. Assessing the biochar effects on selected physical properties of a sandy soil: an analytical approach. Communications in Soil Science and Plant Analysis, 48(12), 1387–1398.
- 22. Duku, M.H., Gu, S., Hagan, E.B. 2011. Biochar production potential in Ghana – A review. Renewable and Sustainable Energy Reviews, 15(8), 3539–3551.
- 23. Dumroese, R.K., Page-Dumroese, D.S., Pinto, J.R. 2020. Biochar potential to enhance forest resilience, seedling quality, and nursery efficiency. Tree Plant. Notes, 63, 61–68.
- 24. Edeh, I.G., Mašek, O., Buss, W. 2020. A metaanalysis on biochar’s effects on soil water properties–New insights and future research challenges. Science of the Total Environment, 714, 136857.
- 25. Evans, R.J. 2008. The relation of pyrolysis processes to charcoal chemical and physical properties. National Renewable Energy Laboratory, Diakses Pada, 18.
- 26. Gazal, O., Eslamian, S. 2021. Comprehensive groundwater risk assessment case study: Arid northern Jordan agricultural areas. International Journal of Hydrology Science and Technology, 12(4), 382–447.
- 27. Guo, X.X., Wu, S.B., Wang, X.Q., Liu, H.T. 2021. Impact of biochar addition on three-dimensional structural changes in aggregates associated with humus during swine manure composting. Journal of Cleaner Production, 280, 124380.
- 28. Gupta, D.K., Gupta, C.K., Dubey, R., Fagodiya, R.K., Sharma, G., Noor Mohamed, M.B., Dev R., Shukla, A.K. 2020. Role of biochar in carbon sequestration and greenhouse gas mitigation. Biochar Applications in Agriculture and Environment Management, 141–165.
- 29. Hagemann, N., Joseph, S., Schmidt, H.P.I., Kammann, C., Harter, J., Borch, T.B., Young, R., Varga, K., Taherymoosavi, S., Wade Elliott, K., McKenna, A., Albu, M., Mayrhofer, C., Obst, M., Conte, P., Dieguez-Alonso, A., Orsetti, S., Subdiaga, E., Behrens, S., Kappler, A. 2017. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nature Communications, 8(1), 1089.
- 30. Hanoğlu, A., Çay, A., Yanık, J. 2019. Production of biochars from textile fibres through torrefaction and their characterisation. Energy, 166, 664–673.
- 31. Huang, K., Li, M., Li, R., Rasul, F., Shahzad, S., Wu, C., Shao, J., Huang, G., Li, R., Almari S., Hashem M., Aamer, M. 2023. Soil acidification and salinity: The importance of biochar application to agricultural soils. Frontiers in Plant Science, 14, 1206820.
- 32. Jeffery, S., Verheijen, F.G., Van der Velde, M., Bastos, A.C., 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ., 144(1), 175–187. https://doi.org/10.1016/j.agee.2011.08.015.
- 33. Jones, D.L., Rousk, J., Edwards-Jones, G., DeLuca, T.H., Murphy, D.V. 2012. Biochar-mediated changes in soil quality and plant growth in a three-year f ield trial. Soil biology and Biochemistry, 45, 113124. https://doi.org/10.1016/j.soilbio.2011.10.012
- 34. Joseph, S.D., Downie, A., Munroe, P., Crosky, A., Lehmann, J. 2007. Biochar for carbon sequestration, reduction of greenhouse gas emissions and enhancement of soil fertility: A review of the materials science. In Proceedings of the Australian combustion symposium (pp. 130-133). University of Sydney, Sydney.
- 35. Kabir, E., Kim, K-H., Kwon, E.E. 2023. Biochar as a tool for the improvement of soil and environment. Front. Environ. Sci., 11, 1324533. doi: 10.3389/fenvs.2023.1324533.
- 36. Kammen, D.M., Lew, D.J. 2005. Review of Technologies for the Production and Use of Charcoal. Renewable and appropriate energy laboratory report, 1.
- 37. Karimi, A., Moezzi, A., Chorom, M., Enayatizamir, N. 2020. Application of biochar changed the status of nutrients and biological activity in a calcareous soil. Journal of Soil Science and Plant Nutrition, 20, 450–459.
- 38. Kavitha, B., Reddy, P.V.L., Kim, B., Lee, S.S., Pandey, S.K., Kim, K.H. 2018. Benefits and limitations of biochar amendment in agricultural soils: A review. Journal of Environmental Management, 227, 146154. https://doi.org/10.1016/j.jenvman.2018.08.082
- 39. Khalid, S., Khan, H.A., Arif, M., Altawaha, A.R., Adnan, M., Fahad, S., Parmar, B. 2019. Organic matter management in cereals based system: symbiosis for improving crop productivity and soil health. In: Sustainable Agriculture Reviews, 29, 67–92. https://doi.org/10.1007/978-3-030-26265-53.
- 40. Khater, E.S., Bahnasawy, A., Hamouda, R., Sabahy, A., Abbas, W., Morsy, O.M. 2024. Biochar production under different pyrolysis temperatures with different types of agricultural wastes. Scientific Reports, 14(1), 2625.
- 41. Kocsis, T., Ringer, M., Biró, B. 2022. Characteristics and applications of biochar in soil–plant systems: A short review of benefits and potential drawbacks. Applied Sciences, 12(8), 4051.
- 42. Laird, D., Fleming, P., Davis, D.D., Horton, R., Wang, B., Karlen, D.L., 2010. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 158(3), 443–449. https://doi.org/10.1016/j.geoderma.2010.05.013
- 43. Lee, Y.E., Jo, J.H., Kim, I.T., Yoo, Y.S. 2018. Influence of NaCl concentration on food-waste biochar structure and templating effects. Energies, 11(9), 2341.
- 44. Lee, Y., Kim, G., Choi, E. 2019. characterization and application of corn stover biochar in soil amendment. Bioresource Technology, 271, 412–420.
- 45. Lehmann, J. 2007. Bio‐energy in the black. Frontiers in Ecology and the Environment, 5(7), 381–387.
- 46. Lehmann, J., Cowie, A., Masiello, C.A., Kammann, C., Woolf, D., Amonette, J.E., Cayuela M.L., Camps-Arbestain M., Whitman, T. 2021. Biochar in climate change mitigation. Nature Geoscience, 14(12), 883–892.
- 47. Lin, J.C., Mariuzza, D., Volpe, M., Fiori, L., Ceylan, S., Goldfarb, J.L. 2021. Integrated thermochemical conversion process for valorizing mixed agricultural and dairy waste to nutrient-enriched biochars and biofuels. Bioresource Technology, 328, 124765.
- 48. Liu, X., Zhang, A., Ji, C., Joseph, S., Bian, R., Li, L., Paz-Ferreiro, J. 2013. Biochar’s effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data. Plant Soil, 373(1), 583–594. 442. https://doi.org/10.1007/s11104-013-1806-x.
- 49. Lu, J., Zhang, Q., Werner, A. D., Li, Y., Jiang, S., Tan, Z. 2020. Root-induced changes of soil hydraulic properties–A review. Journal of Hydrology, 589, 125203.
- 50. Lustosa Filho, J.F., Barbosa, C.F., da Silva Carneiro, J.S., Melo, L.C.A., 2019. Difusion and phosphorus solubility of biochar-based fertilizer: visualization, chemical assessment and availability to plants. Soil Tillage Res., 194, 104298. https://doi.org/10.1016/j.still.2019.104298.
- 51. Major, J., 2010. Guidelines on practical aspects of biochar application to feld soil in various soil management systems. Int Biochar Initiat., 8, 5–7.
- 52. Manyà, J.J., Laguarta, S., Ortigosa, M.A., Manso, J.A. 2014. Biochar from slow pyrolysis of twophase olive mill waste: effect of pressure and peak temperature on its potential stability. Energy & Fuels, 28(5), 3271–3280.
- 53. Marks, E.A., Kinigopoulou, V., Akrout, H., Azzaz, A.A., Doulgeris, C., Jellali, S., Rad, C., Zulueta, P.S., Tziritis, E., El-Bassi L., Ghimbeu C.M., Jeguirim, M. 2020. Potential for production of biochar-based fertilizers from olive mill waste in Mediterranean Basin countries: An initial assessment for Spain, Tunisia, and Greece. Sustainability, 12(15), 6081.
- 54. Mensah, A.K., Frimpong, K.A., 2018. Biochar and/ or compost applications improve soil properties, growth, and yield of maize grown in acidic rainforest and coastal savannah soils in Ghana. Int J Agron., 2018, 1–8. https://doi.org/10.1155/2018/6837404.
- 55. Mohawesh, O., Albalasmeh, A., Gharaibeh, M., Deb, S., Simpson, C., Singh, S., Al-Soub, B., Hanandeh, A. E. 2021. Potential use of biochar as an amendment to improve soil fertility and tomato and bell pepper growth performance under arid conditions. Journal of Soil Science and Plant Nutrition, 21(4), 2946–2956.
- 56. Mohawesh, O., Coolong, T., Aliedeh, M., Qaraleh, S. 2018. Greenhouse evaluation of biochar to enhance soil properties and plant growth performance under arid environment. Bulgarian Journal of Agricultural Science, 24(6).
- 57. Mona, S., Malyan, S.K., Saini, N., Deepak, B., Pugazhendhi, A., Kumar, S.S. 2021. Towards sustainable agriculture with carbon sequestration, and greenhouse gas mitigation using algal biochar. Chemosphere, 275, 129856.
- 58. Mousavi, S.M., Srivastava, A.K., Cheraghi, M. 2023. Soil health and crop response of biochar: An updated analysis. Archives of Agronomy and Soil Science, 69(7), 1085–1110.
- 59. Murtaza, G., Ahmed, Z., Usman, M., Tariq, W., Ullah, Z., Shareef, M., Iqbal, H., Waqas, M., Tariq, A., Wu, Y., Zhang, Z. 2021. Biochar induced modif ications in soil properties and its impacts on crop growth and production. Journal of Plant Nutrition, 44(11), 1677–1691.
- 60. Nielsen, S., Joseph, S., Ye, J., Chia, C., Munroe, P., van Zwieten, L., Thomas, T., 2018. Crop-season and residual effects of sequentially applied mineral enhanced biochar and N fertilizer on crop yield, soil chemistry and microbial communities. Agric Ecosyst Environ., 255, 52–61. https://doi.org/10.1016/j.agee.2017.12.020.
- 61. Oguntunde, P.G., Abiodun, B.J., Ajayi, A.E., Van De Giesen, N. 2008. Effects of charcoal production on soil physical properties in Ghana. Journal of Plant Nutrition and Soil Science, 171(4), 591–596. https://doi.org/10.1002/jpln.200625185
- 62. Pahalvi, H.N., Rafiya, L., Rashid, S., Nisar, B., Kamili, A.N. 2021. Chemical fertilizers and their impact on soil health. Microbiota and Biofertilizers, Vol 2: Ecofriendly tools for reclamation of degraded soil environs, 1–20.
- 63. Panwar, N.L., Pawar, A., Salvi, B.L. 2019. Comprehensive review on production and utilization of biochar. SN Applied Sciences, 1, 1–19.
- 64. Pariyar, P., Kumari, K., Jain, M.K., Jadhao, P.S. 2020. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Science of the Total Environment, 713, 136433.
- 65. Pathy, A., Ray, J., Paramasivan, B. 2020. Biochar amendments and its impact on soil biota for sustainable agriculture. Biochar, 2(3), 287–305.
- 66. Peake, L.R., Reid, B.J., Tang, X. 2014. Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils. Geoderma, 235, 182–190. https://doi.org/10.1016/j.geoderma.2014.07.002
- 67. Pereira, C.A., Mulazzani, R.P., de Jong Van Lier, Q., de Araújo Pedron, F., Gubiani, P.I. 2023. Particle arrangement and internal porosity of coarse fragments affect water retention in stony soils. European Journal of Soil Science, 74(3), e13382.
- 68. Pereira, E.I.P., Conz, R.F., Six, J., 2017. Nitrogen utilization and environmental losses in organic green¬house lettuce amended with two distinct biochars. Sci Total Environ., 598, 1169–1176. https://doi.org/10.1016/j.scitotenv.2017.04.062.
- 69. Qian, Z., Tang, L., Zhuang, S., Zou, Y., Fu, D., Chen, X. 2020. Effects of biochar amendments on soil water retention characteristics of red soil at south China. Biochar, 2, 479–488.
- 70. Qin, X., Wang, H., Liu, C., Li, J., Wan, Y., Gao, Q., Fan F., Liao, Y. 2016. Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system: A four-year case study in south China. Science of the Total Environment, 569, 1390–1401. https://doi.org/10.1016/j.scitotenv.2016.06.222
- 71. Rawat, J., Saxena, J., Sanwal, P. 2019. Biochar: a sustainable approach for improving plant growth and soil properties. In: Biochar-an imperative amendment for soil and the environment. IntechOpen. https://doi.org/10.5772/intechopen.82151
- 72. Rodriguez, J.A., Lustosa Filho, J.F., Melo, L.C.A., de Assis, I.R., de Oliveira, T.S. 2020. Influence of pyrolysis temperature and feedstock on the properties of biochars produced from agricultural and industrial wastes. Journal of analytical and applied pyrolysis, 149, 104839.
- 73. Salem, T.M., Refaie, K.M., Abd, A.E.H.E.G., Sherif, E.L., EID, M.A.M. 2019. Biochar application in alkaline soil and its effect on soil and plant. Acta agriculturae Slovenica, 114(1), 85–96.
- 74. Schlüter, S., Sammartino, S., Koestel, J. 2020. Exploring the relationship between soil structure and soil functions via pore-scale imaging. Geoderma, 370, 114370.
- 75. Seehausen, M.L., Gale, N.V., Dranga, S., Hudson, V., Liu, N., Michener, J., Thomas, S.C. 2017. Is there a positive synergistic effect of biochar and compost soil amendments on plant growth and physiological performance? Agronomy, 7(1), 13. https://doi.org/10.3390/agronomy7010013.
- 76. Şeker, C., Manirakiza, N. 2020. Effectiveness of compost and biochar in improving water retention characteristics and aggregation of a sandy clay loam soil under wind erosion. Carpathian Journal of Earth and Environmental Sciences, 15(1), 5–18.
- 77. Shi, W., Ju, Y., Bian, R., Li, L., Joseph, S., Mitchell, D.R., Munroe, P., Taherymoosavi, S., Pan, G., 2020. Biochar bound urea boosts plant growth and reduces nitrogen leaching. Sci. Total Environ., 701, 134424.
- 78. Shi, R.Y., Hong, Z.N., Li, J.Y., Jiang, J., Kamran, M.A., Xu, R.K., Qian, W. 2018. Peanut straw biochar increases the resistance of two Ultisols derived from different parent materials to acidification: A mechanism study. Journal of environmental management, 210, 171–179.
- 79. Shinde, R., Shahi, D.K., Mahapatra, P., Singh, C.S., Naik, S.K., Thombare, N., Singh, A.K. 2022. Management of crop residues with special reference to the on-farm utilization methods: A review. Industrial Crops and Products, 181, 114772.
- 80. Simiele, M., De Zio, E., Montagnoli, A., Terzaghi, M., Chiatante, D., Scippa, G.S., Trupiano, D. 2022. Biochar and/or compost to enhance nurseryproduced seedling performance: A potential tool for forest restoration programs. Forests, 13(4), 550.
- 81. Singh, H., Northup, B.K., Rice, C.W., Prasad, P.V. 2022. Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar, 4(1), 8. https://doi.org/10.1007/s42773-022-00138-1
- 82. Smith, L., Zhang, X., Chen, H. 2020. Properties and functions of biochar derived from wood and tree remains for soil enhancement. Soil Science Society of America Journal, 84, 123–134
- 83. Söylemez, M. 2023. An experimental study of the effect of soil particles and pore orientation angles on permeability. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 47(6), 3773–3783.
- 84. Spokas, K,A. 2010. Review of the stability of biochar in soils: predictability of O: C molar ratios. Carbon Manag., 1(2), 289–303. https://doi.org/10.4155/cmt.10.32.
- 85. Sumner, M.E., Noble, A.D. 2003. Soil acidification: the world story. In Handbook of soil acidity (pp. 15–42). CRC Press.
- 86. Sun, Z., Bruun, E. W., Arthur, E., de Jonge, L. W., Moldrup, P., Hauggaard-Nielsen, H., Elsgaard, L. 2014. Effect of biochar on aerobic processes, enzyme activity, and crop yields in two sandy loam soils. Biology and Fertility of Soils, 50, 1087–1097. https://doi.org/10.1007/s00374-014-0928-5
- 87. Tian, J., Wang, J., Dippold, M., Gao, Y., Blagodatskaya, E., Kuzyakov, Y. 2016. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil. Science of the Total Environment, 556, 89–97.
- 88. Van Nguyen, T.T., Phan, A.N., Nguyen, T.A., Nguyen, T.K., Nguyen, S.T., Pugazhendhi, A., Phuong, H.H.K. 2022. Valorization of agriculture waste biomass as biochar: As first-rate biosorbent for remediation of contaminated soil. Chemosphere, 307, 135834.
- 89. Wang, C., Luo, D., Zhang, X., Huang, R., Cao,Y., Liu, G., Zhang,Y.,Wang,H., 2022. Biochar-based slowrelease of fertilizers for sustainable agriculture: A mini review. Environmental Science and Ecotechnology, 10, 100167. https://doi.org/10.1016/j.ese.2022.100167.
- 90. Wystalska, K., Malińska, K., Barczak, M. 2021. Poultry manure derived biochars–the impact of pyrolysis temperature on selected properties and potentials for further modifications. Journal of Sustainable Development of Energy, Water and Environment Systems, 9(1).
- 91. Xu, D., Carswell, A., Zhu, Q., Zhang, F., de Vries, W. 2020. Modelling long-term impacts of fertilization and liming on soil acidification at Rothamsted experimental station. Science of the total environment, 713, 136249.
- 92. Yan, T., Xue, J., Zhou, Z., Wu, Y. 2021. Biocharbased fertilizer amendments improve the soil microbial community structure in a karst mountainous area. Science of the Total Environment, 794, 148757.
- 93. Yang, W., Feng, G., Miles, D., Gao, L., Jia, Y., Li, C., Qu, Z. 2020. Impact of biochar on greenhouse gas emissions and soil carbon sequestration in corn grown under drip irrigation with mulching. Science of the Total Environment, 729, 138752.
- 94. Yang, Y., Sun, K., Han, L., Chen, Y., Liu, J., Xing, B. 2022. Biochar stability and impact on soil organic carbon mineralization depend on biochar processing, aging and soil clay content. Soil Biology and Biochemistry, 169, 108657.
- 95. Yao, R., Li, H., Yang, J., Zhu, W., Yin, C., Wang, X., Xie W., Zhang, X. 2022. Combined application of biochar and N fertilizer shifted nitrification rate and amoA gene abundance of ammonia-oxidizing microorganisms in salt-affected anthropogenic-alluvial soil. Applied Soil Ecology, 171, 104348.
- 96. Yargicoglu, E.N., Sadasivam, B.Y., Reddy, K.R., Spokas, K. 2015. Physical and chemical characterization of waste wood derived biochars. Waste Management, 36, 256–268. https://doi.org/10.1016/j.wasman.2014.10.029
- 97. Yeboah, E., Ofori, P., Quansah, G.W., Sohi, S., 2009. Improving soil productivity through biochar amendments to soils. Soil Sci Soc Am J., 73(3), 961–966. https://doi.org/10.2136/sssaj2008.0204.
- 98. Zhang, P., Duan, W., Peng, H., Pan, B., Xing, B., 2022. Functional biochar and its balanced design, ACS Environ., 2, 115–127.
- 99. Zhang, Y., Wang, J., Feng, Y. 2021. The effects of biochar addition on soil physicochemical properties: A review. Catena, 202, 105284.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e64b8038-8f0d-4149-9cc6-81980411b5b6