PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Negative Stiffness Demonstrated by NiAl Nanofilms

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper studies the uniaxial strain control tension of NiAl nanofilms via molecular dynamics simulations. The nanofilm deforms elastically until fracture at tensile strain is as large as 37%. The stress-strain curve has a range where tensile deformation develops at decreasing tensile stress, thus indicating negative stiffness. Such deformation is thermodynamically unstable and the nanofilm splits into domains with two different values of elastic strain. Deformation within the unstable range is controlled by motion of the domain walls, resulting in the domains with larger strain grow at the expense of the domains with smaller strain.
Twórcy
  • School of Mechanical and Aerospace Engineering, Nanyang Technological University 50 Nanyang Avenue, Singapore 639798, Singapore
  • 2Institute for Metals Superplasticity Problems, Russian Academy of Sciences 39 Khalturina St., Ufa 450001, Russia
  • 2Institute for Metals Superplasticity Problems, Russian Academy of Sciences 39 Khalturina St., Ufa 450001, Russia
  • 2Institute for Metals Superplasticity Problems, Russian Academy of Sciences 39 Khalturina St., Ufa 450001, Russia
autor
  • School of Mechanical and Aerospace Engineering, Nanyang Technological University 50 Nanyang Avenue, Singapore 639798, Singapore
Bibliografia
  • [1] K. Evans, A. Alderson, Auxetic materials: Functional materials and structures from lateral thinking! Adv. Mater. 12, 617-628 (2000).
  • [2] A. Alderson, K.L. Alderson, Auxetic materials. Proceedings of the Institution of Mechanical Engineers, Part G: J Aerospace Eng. 221(4), 565-575 (2007).
  • [3] X.F. Wang, T.E. Jones, W. Li, Y.C. Zhou, Extreme Poisson’s ratios and their electronic origin in B2 CsCl-type AB intermetallic compounds. Phys. Rev. B 85, 134108-7 (2012).
  • [4] T. Tian, X.F. Wang, W. Li, Ab initio calculations on elastic properties in L12 structure Al3X and X3Al-type (X=transition or main group metal) intermetallic compounds. Solid State Commun. 156, 69-75 (2013).
  • [5] J.W. Narojczyk, K.W. Wojciechowski, Elastic properties of degenerate f.c.c. crystal of polydisperse soft dimers at zero temperature. J. Non-Cryst. Solids 356, 2026-2032 (2010).
  • [6] A.A. Vasiliev, S.V. Dmitriev, Y. Ishibashi, T. Shigenari, Elastic properties of a two-dimensional model of crystals containing particles with rotational degrees of freedom. Phys. Rev. B 65, 094101-7 (2002).
  • [7] A.U. Ortiz, A. Boutin, A.H. Fuchs, F.-X. Coudert, Anisotropic elastic properties of flexible metal-organic frameworks: How soft are soft porous crystals? Phys. Rev. Lett. 109, 195502-5 (2012).
  • [8] A.D. Fortes, E. Suard, K.S. Knight, Negative linear compressibility and massive anisotropic thermal expansion in methanol monohydrate. Science 331, 742-746 (2011).
  • [9] J.N. Grima, D. Attard, R. Gatt, Unusual thermoelastic properties of methanol monohydrate. Science 331, 687-688 (2011).
  • [10] J.N. Grima, D. Attard, R. Caruana-Gauci, R. Gatt, Negative linear compressibility of hexagonal honeycombs and related systems. Scripta Mater. 65, 565-568 (2011).
  • [11] D.L. Barnes, W. Miller, K.E. Evans, A. Marmier, Modelling negative linear compressibility in tetragonal beam structures. Mech. Mater. 46, 123-128 (2012).
  • [12] E.V. Vakarin, A.V. Talyzin, On the mechanism of negative compressibility in layered compounds. Chem. Phys. 369, 19-21 (2010).
  • [13] R.S. Lakes, K.W. Wojciechowski, Negative compressibility, negative Poisson’s ratio, and stability. Phys. Status Solidi 245(3), 545-551 (2008).
  • [14] J.N. Grima, B. Ellul, D. Attard, R. Gatt, M. Attard, Composites with needle-like inclusions exhibiting negative thermal expansion: A preliminary investigation. Compos. Sci. Technol. 70, 2248-2252 (2010).
  • [15] V. Gava, A.L. Martinotto, C.A. Perottoni, First-principles mode Gruneisen parameters and negative thermal expansion in α-ZrW2O8. Phys. Rev. Lett. 109, 195503-5 (2012).
  • [16] P.L. de Andres, F. Guinea, M.I. Katsnelson, Bending modes, anharmonic effects, and thermal expansion coefficient in single-layer and multilayer grapheme. Phys. Rev. B 86, 144103-5 (2012).
  • [17] V.E. Fairbank, A.L. Thompson, R.I. Cooper, A.L. Goodwin, Charge-ice dynamics in the negative thermal expansion material Cd(CN)2. Phys. Rev. B 86, 104113-5 (2012).
  • [18] A. Rebello, J.J. Neumeier, Z. Gao, Y. Qi, Y. Ma, Giant negative thermal expansion in La-doped CaFe2As2. Phys. Rev. B 86, 104303-6 (2012).
  • [19] I.A. Stepanov, Thermodynamics of substances with negative thermal expansion and negative compressibility. J. Non-Cryst. Solids 356, 1168-1172 (2010).
  • [20] V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi.10(4), 509-514 (1968).
  • [21] V. Veselago, L. Braginsky, V. Shklover, C. Hafner, Negative refractive index materials. J. Comput. Theor. Nanos. 3(2), 189-218 (2006).
  • [22] I.E. Dzyaloshinskii, E.M. Lifshitz, L.P. Pitaevskii, Reviews of topical problems: General theory of Van Der Waals’ forces. Soviet Physics Uspekhi 4(2), 153-176 (1961).
  • [23] R.S. Lakes, W.J. Drugan, Dramatically stiffer elastic composite materials due to a negative stiffness phase? J. Mech. Phys. Solids. 50, 979-1009 (2002).
  • [24] D. Shilkrut, E. Riks, Stability of nonlinear shells: on the example of spherical shells. Elsevier Science, the Netherlands (2002), 458 p.
  • [25] X. Wang, H. Hamasaki, M. Yamamura, R. Yamauchi, T. Maeda, Y. Shirai, F. Yoshida, Yield-point phenomena of Ti-20V-4Al-1Sn at 1073 K and its constitutive modelling. Mater. Trans. (JIM) 50(6), 1576-1578 (2009).
  • [26] T. Jaglinski, D. Kochmann, D. Stone, R.S. Lakes, Composite materials with viscoelastic stiffness greater than diamond. Science 315, 620 (2007).
  • [27] R.S. Lakes, T. Lee, A. Bersie, Y.C. Wang, Extreme damping in composite materials with negative-stiffness inclusions. Letters to Nature. Nature 410, 565-567 (2001).
  • [28] Y.C.Wang, J.G. Swadener, R.S. Lakes, Anomalies in stiffness and damping of a 2D discrete viscoelastic system due to negative stiffness components. Thin Solid Films 515, 3171-3178 (2007).
  • [29] W.J. Drugan, Elastic composite materials having a negative stiffness phase can be stable. Phys. Rev. Lett. 98, 055502 (2007).
  • [30] D.M. Kochmann,W.J. Drugan, Analytical stability conditions for elastic composite materials with a non-positive-definite phase. Proc. R. Soc. A (2012) 468, 2230–2254.
  • [31] C.-M. Lee, V.N. Goverdovskiy, A multi-stage high-speed railroad vibration isolation system with “negative” stiffness. J. Sound Vib. 331, 914-921 (2012).
  • [32] A. Carrella, M.J. Brennan, T.P. Waters, K. Shin, On the design of a high-static–low-dynamic stiffness isolator using linear mechanical springs and magnets. J. Sound Vib. 315(3), 712-720 (2008).
  • [33] A.V. Dyskin, E. Pasternak, Elastic composite with negative stiffness inclusions in antiplane strain. Int. J. Eng. Sci. 58, 45-56 (2012).
  • [34] J. Yang, Y.P. Xiong, J.T. Xing, Dynamics and power flow behaviour of a nonlinear vibration isolation system with a negative stiffness mechanism. J. Sound Vib. 332(1), 167-183 (2013).
  • [35] D.M. Kochmann, W.J. Drugan, Infinitely stiff composite via a rotation-stabilized negative-stiffness phase. Appl. Phys. Lett. 99, 011909 (2011).
  • [36] T. Zhu, J. Li, Ultra-strength materials. Progr. Mater. Sci. 55(7), 710-757 (2010).
  • [37] J.R. Greer, J.T.M. De Hosson, Review: Plasticity in smallsized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56(6), 654-724 (2011).
  • [38] S. Li, X. Ding, J. Deng, T. Lookman, J. Li, X. Ren, J. Sun, A. Saxena, Superelasticity in bcc nanowires by a reversible twinning mechanism. Phys. Rev. B 82, 205435-12 (2010).
  • [39] N. Abdolrahim, I.N. Mastorakos, H.M. Zbib, Deformation mechanisms and pseudoelastic behaviors in trilayer composite metal nanowires. Phys. Rev. B 81, 054117-5 (2010).
  • [40] C. Ni, H. Ding, C. Li, L.T. Kong, X.J. Jin, Pseudo-elasticity and ultra-high recoverable strain in cobalt nanowire: A molecular dynamics study. Scripta Mater. 68, 191-194 (2013).
  • [41] V.K. Sutrakar, D.R, Mahapatra. Superplasticity in intermetallic NiAl nanowires via atomistic simulations. Mater. Lett. 64, 879-881 (2010).
  • [42] V.K. Sutrakar, D.R. Mahapatra, Asymmetry in structural and thermo-mechanical behavior of intermetallic NiAl nanowire under tensile/compressive loading: A molecular dynamics study. Intermetallics 18, 1565-1571 (2010).
  • [43] V.K. Sutrakar, D.R. Mahapatra, Stress-induced phase transformation and pseudo-elastic/pseudo-plastic recovery in intermetallic Ni–Al nanowires. Nanotechnology 20 , 295705-9 (2009).
  • [44] V.K. Sutrakar, D.R. Mahapatra, Single and multi-step phase transformation in CuZr nanowire under compressive/tensile loading. Intermetallics 18, 679–687 (2010).
  • [45] V.K. Sutrakar, D.R. Mahapatra, Stress-induced martensitic phase transformation in Cu–Zr nanowires. Mater. Lett. 63, 1289–1292 (2009).
  • [46] A.V. Savin, I.P. Kikot, M.A. Mazo, A.V. Onufriev, Two-phase stretching of molecular chains. PNAS, doi:10.1073/pnas.1218677110 (2013).
  • [47] C. Miehe, M. Lambrecht, E. Gurses, Analysis of material instabilities in inelastic solids by incremental energy minimization and relaxation methods: evolving deformation microstructures in finite plasticity. J. Mech. Phys. Solids 52, 2725-2769 (2004).
  • [48] E.Gurses, C. Miehe, On evolving deformation microstructures in non-convex partially damaged solids. J. Mech. Phys. Solids 59, 1268-1290 (2011).
  • [49] G.P. Purja Pun,Y. Mishin, Development of an interatomic potential for the Ni-Al system. Phil. Mag. 89, 3245-3267 (2009).
  • [50] S. Nose, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511-519 (1984).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e649518b-c603-4cd1-8f8c-67a98e44ab23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.