PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sandwich panel subjected to blast wave impact and accelerated fragments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents sandwich panels subjected to blast wave impact and accelerated fragments. The research discusses results obtained from original experimental setups that fill a gap in the area of investigation of the mechanical response of sandwich panels used in civil engineering applications under accidental design situations such as blast wave impact and/or fragment penetration. In field experiments, a high-speed camera was used to record both the fragment trajectory and the deflection of the sandwich panel. The authors proposed the equivalent static load for both the global analysis of the sandwich panel and the calibration of the numerical model. In FE modelling, CONWEP algorithm was used to simulate blast wave impact, and ductile damage model material to allow perforation of the sandwich panel faces. The convergence of mesh size was analyzed. For the validated numerical model, an evaluation of the effect of the size of the fragment (diameter/mass) on the outlet velocity and the size of the inlet andoutlet holes was carried out.
Rocznik
Strony
art. no. 183698
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Faculty of Civil and Transport Engineering,Poznan University of Technology, Poland
  • Faculty of Civil and Transport Engineering,Poznan University of Technology, Poland
  • Faculty of Civil and Transport Engineering,Poznan University of Technology, Poland
  • Faculty of Civil and Transport Engineering,Poznan University of Technology, Poland
  • Faculty of Civil and Transport Engineering,Poznan University of Technology, Poland
  • Faculty of Civil and Transport Engineering,Poznan University of Technology, Poland
Bibliografia
  • 1. Abaqus 2016 documentation: http://130.149.89.49:2080/v2016/index.html. access 12.12.2022.
  • 2. Alberdi R. Przywara J. Khandelwal K. Performance evaluation of sandwich panel systems for blast mitigation. Engineering Structures 2013; 56: 2119–2130. http://dx.doi.org/10.1016/j.engstruct.2013.08.021.
  • 3. Al-Rifaie H. Studziński R. Gajewski T. Malendowski M. Peksa P. Sumelka W. Sielicki PW. Full scale field testing of trapezoidal core sandwich panels subjected to adjacent and contact detonations. Modern Trends in Research on Steel. Aluminium and Composite Structures: Proceedings of the XIV International Conference on Metal Structures (ICMS2021). Poznan. Poland. 16–18 June 2021. Leiden. Netherlands: Routledge. 2021 -s.393–399. https://doi.org/10.1201/9781003132134-50.
  • 4. Al-Rifaie H. Studziński R. Gajewski T. Malendowski M. Sumelka W. Sielicki PW. Anew blast absorbing sandwich panel with unconnected corrugated layers—numerical study. Energies 2021; 14(1). https://doi.org/10.3390/en14010214.
  • 5. Brekken KA. Reyes A. Berstad T. Langseth M. Børvik T. Sandwich panels with polymeric foam cores exposed to blast loading: an experimental and numerical investigation. Appl Sci 2020;10: 9061. doi:10.3390/app10249061.
  • 6. Cheng W. Bin X. Yuen SCK. Numerical analysis of cladding sandwich panels with tubular cores subjected to uniform blast load. International Journal of Impact Engineering 2019;133:103345. https://doi.org/10.1016/j.ijimpeng.2019.103345.
  • 7. Ebrahimi H. Vaziri A. Metallic sandwich panels subjected to multiple intense shocks. International Journal of Solids and Structures 2013;50:1164–1176. https://doi.org/10.1016/j.ijsolstr.2012.12.013.
  • 8. Estrada Q. Szwedowicz D. Majewski T. Martinez E. Rodriguez-Mendez A. Effect of quadrilateral discontinuity size on the energy absorption of structural steel profiles. Eksploatacja i Niezawodnosc –Maintenance and Reliability 2016; 18 (2):186–193. https://doi.org/10.17531/ein.2016.2.5.
  • 9. Ferdynus M. Kotełko M. Kral J. Energy absorption capability numerical analysis of thin-walled prismatic tubes with corner dents under axial impact. Eksploatacja i Niezawodnosc –Maintenance and Reliability 2018; 20(2): 252–259. https://doi.org/10.17531/ein.2018.2.10.
  • 10. Iluk A. Method of evaluating the stiffness of a vehicle with respect to the risk of explosion. Eksploatacja i Niezawodnosc –Maintenance and Reliability 2014; 16 (2): 224–228.
  • 11. Jackson M. Shukla A. Performance of sandwich composites subjected to sequential impact and air blast loading. Composites: Part B 2011;42:155–166. https://doi.org/10.1016/j.compositesb.2010.09.005.
  • 12. Komorek A. Przybyłek P. Examination of the influence of cross-impact load on bend strength properties of composite materials. used in aviation. Eksploatacja i Niezawodnosc –Maintenance and Reliability 2012; 14 (4): 265–269.
  • 13. Lee JHS. Physics of explosion. Montreal: McGill University; 1984.
  • 14. Li Y. Lv Z. Wang Y. Blast response of aluminum foam sandwich panel with double V-shaped face plate. International Journal of Impact Engineering 2020;144:103666. https://doi.org/10.1016/j.ijimpeng.2020.103666.
  • 15. Reddy JN. A simple higher-order theory for laminated composite plates. J Appl Mech 1984;51:745–752. https://doi.org/10.1115/1.3167719
  • 16. Rolfe E. Kelly M. Arora H. Hooper P. Dear JP. Failure analysis using X-ray computed tomography of composite sandwich panels subjected to full-scale blast loading. Composites Part B 2017;129:2640. http://dx.doi.org/10.1016/j.compositesb.2017.07.022.
  • 17. Sachs RG. Dependence of blast on ambient pressure and temperature. Aberdeen: BRL-466 Ballistic Research Laboratory; 1944.https://doi.org/10.21236/ADA800535
  • 18. Sadovskiy MA. Mechanical effects of air shockwaves from explosions according to experiments. In: Sadovskiy MA. editor. Geophysics and physics of explosion. Moscow: Nauka Press; 2004. Russian.
  • 19. Shen J. Lu G. Zhao L. Qu Z. Response of curved sandwich panels subjected to blast loading. Journal of Performance of Constructed Facilities 2011;25. 5:382393. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000234.
  • 20. Sielicki. P.W.; Stachowski. M. Implementation of Sapper-Blast-Module. a Rapid Prediction Software for Blast Wave Properties. Cent. Eur. J. Energetic Mater. 2015. 12. 473–486.
  • 21. Studziński R. Gajewski T. Malendowski M. Sumelka W. Al-Rifaie H. Peksa P. Sielicki PW. Blast test and failure mechanisms of soft-core sandwich panels for storage halls applications. Materials 2021;14(1):70. https://doi.org/10.3390/ma14010070.
  • 22. Sun G. Wang E. Zhang J. Li S. Zhang Y. Li Q. Experimental study on the dynamic responses of foam sandwich panels with different face sheets and core gradients subjected to blast impulse. International Journal of Impact Engineering 2020;135:103327. https://doi.org/10.1016/j.ijimpeng.2019.103327.
  • 23. Szudrowicz M. Layered composite increasing the resistance of patrol and intervention vehicles to the impact of improvised explosive devices (IED) from below. Eksploatacjai Niezawodnosc –Maintenance and Reliability 2018; 20(1): 9–15. https://doi.org/10.17531/ein.2018.1.2.
  • 24. Szymczak T. Kowalewski ZL. Strength tests of polymer-glass composite to evaluate its operational suitability for ballistic shield plates. Eksploatacja i Niezawodnosc –Maintenance and Reliability 2020; 22 (4): 592–600. http://dx.doi.org/10.17531/ein.2020.4.2
  • 25. Timoshenko SP. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Phil MagSer 1921;6. 41:744–746.https://doi.org/10.1080/14786442108636264
  • 26. Ullah A. Ahmad F. Jang H.-W. Kim S.-W. Hong J.-W. Review of analytical and empirical estimations for incident blast pressure. KSCE J Civ Eng 2017;21:2211–2225. https://doi.org/10.1007/s12205-016-1386-4.
  • 27. Wadley HNG. Børvik T. Olovsson L. Wetzel JJ. Dharmasena KP. Hopperstad OS. Deshpande VS. Hutchinson JW. Deformation and fracture of impulsively loaded sandwich panels. Journal of the Mechanics and Physics of Solids 2013;61:674–699. http://dx.doi.org/10.1016/j.jmps.2012.07.007.
  • 28. Yin X. Gu X. Lin F. Kuang X. Numerical analysis of blast loads inside buildings. In: Yuan Y. Cui J. Mang HA. editors. Computational structural engineering. Dordrecht. The Netherlands: Springer; 2009. p. 681–690. https://doi.org/10.1007/978-90-481-2822-8_74.
  • 29. Yuen S.C.K. Nurick G.N. Theobald M.D. Langdon G.S. Sandwich Panels Subjected to Blast Loading 2009; In: Shukla A.. Ravichandran G.. Rajapakse Y. (eds) Dynamic Failure of Materials and Structures. Springer. Boston. MA. https://doi.org/10.1007/978-1-4419-0446-1_10.
  • 30. Zenkert D. An introduction to sandwich structures. Stockholm: Engineering Materials Advisory Services; 1995.
  • 31. Zhang Ch. Cheng Y. Zhang P. Duan X. Liu J. Li Y. Numerical investigation of the response of I-core sandwich panels subjected to combined blast and fragment loading. Engineering Structures 2017;151:459–471. https://doi.org/10.1016/j.engstruct.2017.08.039.
  • 32. Zhang P. Cheng Y. Liu J. Li Y. Zhang Ch. Hou H. Wang Ch. Experimental study on the dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading. Composites Part B 2016;105;6781. http://dx.doi.org/10.1016/j.compositesb.2016.08.038.
  • 33. Zhou X. Jing L. Deflection analysis of clamped square sandwich panels with layered-gradient foam cores under blast loading. Thin-Walled Structures 2020;157:107141. https://doi.org/10.1016/j.tws.2020.107141.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6460c3f-abd7-4727-b2ed-8fcd59b06806
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.