PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The multistep Laplace optimized decomposition method for solving fractional-order coronavirus disease model (COVID-19) via the Caputo fractional approach

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
COVID-19, a novel coronavirus disease, is still causing concern all over the world. Recently, researchers have been concentrating their efforts on understanding the complex dynamics of this widespread illness. Mathematics plays a big role in understanding the mechanism of the spread of this disease by modeling it and trying to find approximate solutions. In this study, we implement a new technique for an approximation of the analytic series solution called the multistep Laplace optimized decomposition method for solving fractional nonlinear systems of ordinary differential equations. The proposed method is a combination of the multistep method, the Laplace transform, and the optimized decomposition method. To show the ability and effectiveness of this method, we chose the COVID-19 model to apply the proposed technique to it. To develop the model, the Caputo-type fractional-order derivative is employed. The suggested algorithm efficacy is assessed using the fourth-order Runge-Kutta method, and when compared to it, the results show that the proposed approach has a high level of accuracy. Several representative graphs are displayed and analyzed in two dimensions to show the growth and decay in the model concerning the fractional parameter α values. The central processing unit computational time cost in finding graphical results is utilized and tabulated. From a numerical viewpoint, the archived simulations and results justify that the proposed iterative algorithm is a straightforward and appropriate tool with computational efficiency for several coronavirus disease differential model solutions.
Wydawca
Rocznik
Strony
963--977
Opis fizyczny
Bibliogr. 38 poz., tab., wykr.
Twórcy
autor
  • Department of Mathematics, Faculty of Science, The University of Jordan, Amman 11942, Jordan
  • Department of Mathematics, Faculty of Science, The University of Jordan, Amman 11942, Jordan
  • Department of Basic Sciences, Princess Sumaya University for Technology, Amman 11941, Jordan
  • Department of Mathematics, Faculty of Science, Al-Balqa Applied University, Salt 19117, Jordan
Bibliografia
  • [1] N. H. Tuan, H. Mohammadi, and S. Rezapour, A mathematical model for COVID-19 transmission by using the Caputo fractional derivative, Chaos, Solitons Fractals 140 (2020), 110107.
  • [2] F. Haq, K. Shah, G. U. Rahman, and M. Shahzad, Numerical analysis of fractional order model of HIV-1 infection of CD4+T-cells, Comput. Methods Differential Equations 5 (2017), 1–11.
  • [3] I. Koca, Analysis of rubella disease model with non-local and non-singular fractional derivatives, An. Int. J. Optim. Control: Theories Appl. 8 (2018), 17–25.
  • [4] S. Z. Rida, A. A. M. Arafa, and Y. A. Gaber, Solution of the fractional epidemic model by L-ADM, J. Fract. Calculus Appl. 7 (2016), 189–195.
  • [5] H. Singh, J. Dhar, H. S. Bhatti, and S. Chandok, An epidemic model of childhood disease dynamics with maturation delay and latent period of infection, Model. Earth Syst. Environ. 2 (2016), 79.
  • [6] D. Baleanu, S. Etemad, and S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl. 2020 (2020), 64.
  • [7] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative, Chaos, Solitons Fractals 134 (2020), 109705.
  • [8] S. Qureshi, Monotonically decreasing behavior of measles epidemic well captured by Atangana–Baleanu–Caputo fractional operator under real measles data of Pakistan, Chaos, Solitons Fractals 131 (2020), 109478.
  • [9] E. A. Kojabad and S. Rezapour, Approximate solutions of a sum-type fractional integro-differential equation by using Chebyshev and Legendre polynomials, Adv. Differential Equations 2017 (2017), 351.
  • [10] D. Baleanu, H. Mohammadi, and S. Rezapour, Analysis of the model of HIV-1 infection of CD4+ T-cell with a new approach of fractional derivative, Adv. Differential Equations 2020 (2020), 71.
  • [11] M. Talaee, M. Shabibi, A. Gilani, and S. Rezapour, On the existence of solutions for a pointwise defined multi-singular integro-differential equation with integral boundary condition, Adv. Differential Equations 2020 (2020), 41.
  • [12] S. Qureshi, M.M. Chang, and A.A. Shaikh, Analysis of series RL and RC circuits with time-invariant source using truncated M, Atangana beta and conformable derivatives, J. Ocean. Eng. Sci. 6 (2021), 217–227.
  • [13] S. Qureshi, A. Yusuf, and S. Aziz, Fractional numerical dynamics for the logistic population growth model under Conformable Caputo: a case study with real observations, Phys. Scr. 96 (2021), 114002.
  • [14] A. Dighe, T. Jombart, M. Van Kerkhove, and N. Ferguson, IMED abstracts, Int. J. Infect. Dis. 79 (2019), 1–150.
  • [15] Y. Zhou, Z. Ma, and F. Brauer, A discrete epidemic model for SARS transmission and control in China, Math. Comput. Model. 40 (2004), 1491–1506.
  • [16] B. K. Jha, H. Joshi, and D. D. Dave, Portraying the effect of calcium-binding proteins on cytosolic calcium concentration distribution fractionally in nerve cells, Interdiscip. Sci.: Comput. Life Sci. 10 (2018), 674–685.
  • [17] M. Yavuz and E. Bonyah, New approaches to the fractional dynamics of schistosomiasis disease model, Phys. A: Stat. Mech. its Appl. 525 (2019), 373–393.
  • [18] A. Atangana, Modelling the spread of COVID-19 with new fractal-fractional operators: can the lockdown save mankind before vaccination?, Chaos, Solitons Fractals 136 (2020), 109860.
  • [19] M. A. Khan and A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alex. Eng. J. 59 (2020), 2379–2389.
  • [20] S. Bushnaq, T. Saeed, D. F. Torres, and A. Zeb, Control of COVID-19 dynamics through a fractional-order model, Alex. Eng. J. 60 (2021), 3587–3592.
  • [21] P. A. Naik, Z. Eskandari, M. Yavuz, and J. Zu, Complex dynamics of a discrete-time Bazykin–Berezovskaya prey-predator model with a strong Allee effect, J. Comput. Appl. Math. 413 (2022), 114401.
  • [22] F. Özköse, M. Yavuz, M.T. Şenel, and R. Habbireeh, Fractional order modelling of omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom, Chaos, Solitons Fractals 157 (2022), 111954.
  • [23] F. Özköse and M. Yavuz, Investigation of interactions between COVID-19 and diabetes with hereditary traits using real data: A case study in Turkey, Comput. Biol. Med. 141 (2022), 105044.
  • [24] R. Ikram, A. Khan, M. Zahri, A. Saeed, M. Yavuz, and P. Kumam, Extinction and stationary distribution of a stochastic COVID-19 epidemic model with time-delay, Comput. Biol. Med. 141 (2022), 105115.
  • [25] J. Danane, Z. Hammouch, K. Allali, S. Rashid, and J. Singh, A fractional-order model of coronavirus disease 2019 (COVID-19) with governmental action and individual reaction, Math. Methods Appl. Sci. 2021 (2021), 1–14, DOI: 10.1002/mma.7759.
  • [26] E. Bonyah, A. K. Sagoe, D. Kumar, and S. Deniz, Fractional optimal control dynamics of coronavirus model with Mittag–Leffler law, Ecol. Complex. 45 (2021), 100880.
  • [27] S. Yadav, D. Kumar, J. Singh, and D. Baleanu, Analysis and dynamics of fractional order Covid-19 model with memory effect, Results Phys. 24 (2021), 104017.
  • [28] J. Singh, Analysis of fractional blood alcohol model with composite fractional derivative, Chaos, Solitons Fractals 140 (2020), 110127.
  • [29] M. Alqhtani, K. M. Owolabi, K. M. Saad, and E. Pindza, Efficient numerical techniques for computing the Riesz fractional-order reaction-diffusion models arising in biology, Chaos, Solitons Fractals 161 (2022), 112394.
  • [30] H. M. Srivastava, K. M. Saad, W. M. Hamanah, Certain new models of the multi-space fractal-fractional Kuramoto-Sivashinsky and Korteweg-de Vries equations, Mathematics 10 (2022), 1089.
  • [31] M. Alqhtani, K. M. Saad, R. Shah, W. Weera, W. M. Hamanah, Analysis of the fractional-order local Poisson equation in fractal porous media, Symmetry 14 (2022), 1323.
  • [32] B. Inan, M. S. Osman, T. Ak, D. Baleanu, Analytical and numerical solutions of mathematical biology models: The Newell-Whitehead-Segel and Allen-Cahn equations, Math. Methods Appl. Sci. 43 (2020), 2588–2600.
  • [33] B. Cuahutenango-Barro, M. A. Taneco-Hernández, Y. P. Lv, J. F. Gómez-Aguilar, M. S. Osman, H. Jahanshahi, et al. Analytical solutions of fractional wave equation with memory effect using the fractional derivative with exponential kernel, Results Phys. 25 (2021), 104148.
  • [34] E. Çelik, M. Bayram, and T. Yeloglu, Solution of differential-algebraic equations (DAEs) by Adomian decomposition method, Int. J. Pure Appl. Math. Sci. 3 (2006), 93–100.
  • [35] J. Cang, Y. Tan, H. Xu, S. J. Liao, Series solutions of non-linear Riccati differential equations with fractional order, Chaos, Solitons Fractals 40 (2009), 1–9.
  • [36] L. Song and H. Zhang, Application of homotopy analysis method to fractional KdV–Burgers–Kuramoto equation, Phys. Lett. A 367 (2007), 88–94.
  • [37] H. Khan, R. Shah, P. Kumam, D. Baleanu, and M. Arif, Laplace decomposition for solving nonlinear system of fractional order partial differential equations, Adv. Differential Equations 2020 (2020), 375.
  • [38] Z. Odibat, An optimized decomposition method for nonlinear ordinary and partial differential equations, Phys. A: Stat. Mech. its Appl. 541 (2020), 123323.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e644e8bd-f292-450f-bc0b-826b2fd2ed0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.