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Abstract. In this paper, we study operator theory on the x-algebra Mp, consisting of all
measurable functions on the finite Adele ring Ag, in extended free-probabilistic sense. Even
though our x-algebra Mp is commutative, our Adelic-analytic data and properties on Mp
are understood as certain free-probabilistic results under enlarged sense of (noncommutative)
free probability theory (well-covering commutative cases). From our free-probabilistic model
on Ag, we construct the suitable Hilbert-space representation, and study a C*-algebra
Mp generated by Mp under representation. In particular, we focus on operator-theoretic
properties of certain generating operators on Mp.
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1. INTRODUCTION

The main purposes of this paper are:

(i) to construct a free-probability model (under extended sense) of the *-algebra
Mp consisting of all measurable functions on the finite Adele ring Ag, implying
number-theoretic information from the Adelic analysis on Ag,

(ii) to establish a suitable Hilbert-space representation of Mp, reflecting our
free-distributional data from (i) on Mp,

(iii) to construct-and-study a C*-algebra Mp generated by Mp under our representa-
tion of (ii), and
(iv) to consider free distributions of the generating operators of Mp of (iii).

Our main results illustrate interesting connections between primes and operators via
free probability theory.
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1.1. PREVIEW

We have considered how primes (or prime numbers) act on operator algebras. The
relations between primes and operator algebra theory have been studied in various
different approaches. For instance, we studied how primes act on certain von Neumann
algebras generated by p-adic and Adelic measure spaces (e.g., [2]). Meanwhile, in [1],
primes are regarded as linear functionals acting on arithmetic functions. In such
a case, one can understand arithmetic functions as Krein-space operators under certain
Krein-space representations. Also, in [3,4] and [7], we considered free-probabilistic
structures on a Hecke algebra H(G,) for primes p.

In [6], we considered certain free random variables in x-algebras M,, of all measurable
functions on the p-adic number fields Q, in terms of the p-adic integrations ¢, for
all primes p. Under suitable Hilbert-space representations of My, the corresponding
C*- algebras M, of M, are constructed and C*-probability on M, is studied there.
In particular, for all j € Z, we define C*-probability spaces (Mp7 wf ) , where <p§ are
kind of sectionized linear functionals implying the number-theoretic data on M,,
in terms of ¢,. Moreover, from the system

{(Mp,gpé-’) :pEP,jEZ},

of C*-probability spaces, we establish-and-consider the free product C*-probability
space,

(Mp(Z), ) =

called the Adelic C*-probability space.

Independently, in [8], by using the free-probabilistic information from a single
C*-probability space (M,,¢}) (also introduced as above in [6]), for arbitrarily
fixed p € P,j € Z, we established a weighted-semicircular element in a cer-
tain Banach x-probability space generated by (Mp,gof), and realized that corre-
sponding semicircular elements are well-determined. Motivated by [6], we extended
the weighted-semicircularity, and semicircularity of [8] in the free product Banach
x-probability space of Banach x-probability spaces of [8], over both primes and integers,
in [5].

D
pEPTjEZ (M, wj) ’

1.2. MOTIVATION AND DISCUSSION

Motivated by the main results of [5,6] and [8], we here establish free-probabilistic
models (under extended sense) started from the finite Adele ring Ag, to provide similar
framworks of [5] and [8]. Even though our structures are based on the commutativity,
and hence, they are not directly followed original noncommutative free probability
theory, the proceeding processes, settings, and results are from free probability theory.
Thus, we use concepts and terminology from free probability theory.

In this very paper, we will consider neither weighted-semicircularity nor semicir-
cularity on our free-probabilistic structures, however, later, our main results would
provide suitable tools and backgrounds for studying those semicircular-like laws and
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the semicircular law. Readers may realize from our main results that the spectral
properties of operators induced by measurable functions on Ag, and those of free
reduced words induced by measurable functions on @Q, (under free product over
primes p, obtained in [6]) are very similar (under certain additional conditions).
It guarantees that one may/can obtain weighted-semicircularity and semicircularity
on our structures as in [5] and [8] in future.

1.3. OVERVIEW

In Section 2, we briefly introduce backgrounds and a motivation of our works.

Our free-probabilistic model on Mp is established from Adelic calculus, and the
free distributional data on Mp are considered in Section 3. Then, in Section 4, we
construct a suitable Hilbert-space representation of our free-probabilistic model of
Mp, preserving the free-distributional data implying number-theoretic information.
Under representation, the corresponding C*-algebra Mp is constructed.

In Section 5, free probability on the C*-algebra Mp is studied by putting a system
of linear functionals dictated by the Adelic integration. In particular, free distributions
of generating operators of Mp are considered by computing free moments of them.

In Sections 6, we further consider relations between our free-distributional data and
Adelic-analytic information, by computing free distributions of generating operators of
the free product C*-algebras. Especially, we focus on the free distributions of certain
generating opeartors, called (+)-boundary operators.

In Section 7, by constructing free product C*-probability spaces (which are
under usual sense of noncommutative free probability theory) from our system of
C*-probability spaces (which are under extended commutativity-depending sense)
of Sections 5 and 6, we investigate the connections between Adelic analysis and our
free-probabilistic structures. In the long run, we study noncommutative free probability
theory induced by the Adelic analysis on the finite Adele ring Ag.

1.4. MAIN RESULTS

By applying free-probabilistic settings and terminology, we characterize the
functional-analytic properties of the C*-algebras induced by the finite Adele ring
with free-probabilistic language. For instance, functional-analytic or spectral-theoretic
information of certain operators in our C*-algebras are determined by the forms of
free moments, or joint free moments (see Sections 5, 6 and 7). Since our C*-algebra
Mp is commutative, the free-probabilistic model for Mp is non-traditional, but such
a model in Sections 5 and 6 is perfectly fit to analize our main results (even though the
freeness on it is trivial), moreover, this non-traditional approaches become traditional
by constructing free product C*-algebras in Section 7.

The constructions of our free-probabilistic models and corresponding free-
-distributional datas of operators are the main results of this paper. From these,
one can see the connections between (number-theoretic) Adelic analysis, functional
analysis, and (operator-theoretic) spectral theory via free probability.
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2. PRELIMINARIES

In this section, we briefly mention about backgrounds of our proceeding works. See [9]
and [10] (and cited papers therein) for number-theoretic motivations.

2.1. FREE PROBABILITY

Readers can check fundamental analytic-and-combinatorial free probability from
[12] and [14] (and the cited papers therein). Free probability is understood as the
noncommutative operator-algebraic version of classical probability theory and statistics
(covering commutative cases). The classical independence is replaced by the freeness,
by replacing measures to linear functionals. It has various applications not only in pure
mathematics (e.g., [11]), but also in related scientific topics (for example, see [2,3, 5]
and [8]). In particular, we will use combinatorial approach of Speicher (e.g., [12]).
Especially, in the text, without introducing detailed definitions and combinatorial
backgrounds, free moments and free cumulants of operators will be computed. Also, we
use free product of algebras in the sense of [12] and [14], without detailed introduction.

2.2. p-ADIC CALCULUS ON Q,

In this section, we briefly review p-adic calculus on the x-algebras M, of measurable
functions on p-adic number fields Q,, for p € P. For more about p-adic analysis see
e.g., [13].

For a fixed prime p, the p-adic number field Q, is the maximal p-norm closure in
the set Q of all rational numbers, where the p-norm |- |, on Q is defined by

1
|I‘P = |a'pk|p = ]?a

whenever 2 = ap”, for some a € Q, and k € Z. For instance,

L L S T |
3, 13 7] 22 &4
4 1
2 =|4.37=—=3
H e e
and 4 4 1
o o _ _
‘3q3.q fﬁfl,forallqep\{z?)}-

Every element z of Q, is expressed by

2= Y app®, withay €{0,1,...,p—1}, (2.1)
k=—N

for some N € N. So, from the p-adic addition and the p-adic multiplication on
(the elements formed by (2.1) under ) in) Q,, the set Q, forms a ring algebraically

(e.g., [13]).
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Moreover, one can understand this Banach ring Q, as a measure space,

Q= (Qm U(Qp)v p) s

where 0(Q)) is the o-algebra of Q, consisting of all p,-measurable subsets, where p,
is a left-and-right additive-invariant Haar measure on Q,, satisfying

NP(ZP) =1,
where Z,, is the unit disk
Ly ={z€Qp: x|, <1}
of @, consisting of all p-adic integers x, having their forms
x = Zakpk with a;, € {0,1,...,p—1}.
k=0
Moreover, if we define

Uy = kap = {pkx € Qp 1T E Zp}v (2'2)

for all k € Z, then these p,-measurable subsets Uy, of (2.2) satisfy

Qp: UUka
keZ
and 1
Np(Uk):F:l‘p(erUk)v for all k € Z,
and
...CUQCU1CU0:ZPCU1CUQC... (23)

(e.g., [13]). In fact, the family {Uy}rez forms a basis of the Banach topology for Q,,.
Define now subsets 9y, of Q, by

O = Uy, \ Ugt1, forall k € Z. (2.4)

We call such p,-measurable subsets 0, the k-th boundaries of Uy, in Q,, for all k € Z.
By (2.3) and (2.4), one obtains that

Qp = |_| aka
kez
where U means the disjoint union, and

1 1
Hp (O) = tp (Ur) = ptp (Ukr) = - = s (2.5)

for all k € Z.
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Now, let M,, be the set of all ;1,-measurable functions on Q,, i.e.,

My =Cl{xs: 5 €a(@)}], (2.6)

where C[X] mean the algebras generated by X, understood as algebras consisting of
all polynomials in X, for all sets X. So, f € M, if and only if

f= Z tsxs with tg € C,
Seo(Qp)

where > means the finite sum, and xg are the usual characteristic functions
of S € (Qyp).

Then it forms a *-algebra over C. Indeed, the set M,, of (2.6) is an algebra under
the usual functional addition, and functional multiplication. Also, this algebra M,
has the adjoint,

*

> texs = > fsxs,

S€a(Gp) Sea(Gp)

where tg € C, having their conjugates tg in C.
Let f be an element of the %-algebra M, of (2.6). Then one can define the p-adic
integral of f by

[t = 3 tsils) 2.7)
Qp

Sea(Qp)

Note that, by (2.5), if S € 0(Q,), then there exists a subset Ag of Z, such that

As={j€Z:5n0; # o}, (2.8)
satisfying
/Xsdup :/ D Xsn,+o,) i = Y, 11 (SN D))
Qp Q, J€As JEAs
by (2.7)
< 9.) — 1 1
= Z“P( i) = Z pi pitl )’
jEAs JEAS
by (2.5), i.e.,

1 1
/Xsdﬂp < Z (pj - }ﬂ“) ) (2.9)
Qp JjEAs

for all S € 0(Q)), where Ag is in the sense of (2.8).
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More precisely, one can get the following proposition.

Proposition 2.1 ([6]). Let S € 0(Q,), and let xs € M,,. Then there exist r; € R,
such that

0<r; <1linR,

and

1 1
/deup =D 7 <pj - pjﬂ) : (2.10)

JEAs
v

2.3. THE ADELE RING AND THE FINITE ADELE RING

In this section, we introduce the Adele ring Ag, and the finite Adele ring Ag.
For more information about Ag, Ag and the corresponding analysis, see [13].

Definition 2.2. Let Po, = P U {oo}, and identify Q. with the Banach field R,
equipped with the usual-(distance-)metric topology. Let Ag be a set

Ag = {(%)pepw

zp € Qp for each p € P, where only finitely many x,’s
are in Qg \ Z4, but all other z,’s are contained in Z, of Q, [’

(2.11)
equipped with the addition (4),
(xp)pe'poc + (i‘/p)pepm = (zp+ yp)pepoo ) (2.12)
and the multiplication (),
(xp)pepm (yp)pe’Poo = (xpyp)pgpoo ) (2.13)

where Z,, is the unit disk of Q, in the sense of Section 2, and where the entries z, + y,
of (2.12), and the entries x,y, of (2.13) are the p-adic additioin, respectively, the
p-adic multiplication on the p-adic number field Q,, for all p € P, and where o + Yoo,
and TeoYoo are the usual R-addition, respectively, the usual R-multiplication.

The Adele ring Ag is equipped with the product topology of the p-adic-norm
topologies for Q,’s, for all p € P, and the usual-distance-metric topology of Q. = R,
satisfying that

(@yer |, = TT Il (2.14)
PE€P

where | - |, are the p-adic norms on Q,, for all p € P, and | - |« is the usual absolute
value |- | on R = Q.

From the above definition, the set Ag of (2.11) forms a ring algebraically, equipped
with the binary operations (2.12) and (2.13); and this ring Ag is a Banach space under
its | - |g-norm of (2.14), by (2.11). Thus, the set Ag of (2.11) forms a Banach ring
induced by the family

Q = {Qp}pé?’ U {Qoo = R}'
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Indeed, let X = (Jcp)pepoo € Ag, and assume that there are pq,...,py € Poo, for some
N € N, such that
zp, € Qp \ Zy,
foralll=1,...,N, and
Ty € ZLqg,

for all ¢ € Poo \ {p1,--.,pn}. Then, by (2.11) and (2.14),

N N N
|zl = (H JL‘pll,,l> I1 Zqlq | = (Hlxmlpl> 1= (lemm> < 0.
1=1 1=1 =1

q€EPoo \{P1,.-, PN}

From the definition (2.11), the Adele ring Ag is in fact the weak-direct product
of Q, expressed by

A= [ @ (2.15)

PEPso

(e.g., [10] and [13]), where H/ means the weak-direct product (satisfying the conditions
of (2.11)). So, the Adele ring Ag can be re-defined by the weak-direct product (2.15)
of the family Q equipped with the norm (2.14).

Definition 2.3. Let Ag be the Adele ring (2.11), or (2.15). Define a ring Ag by

Ag = {(gcp)pep ‘ xp € Qp, for allp € P, and (0, (xp)pep) € Ag } , (2.16)

set-theoretically, equipped with the inherited operations of Ag, under subspace topology.
Then this topological ring Ag of the Adele ring Ag is said to be the finite Adele ring.

By (2.15) and (2.16), one can conclude that

A= T @ (2.17)

peEP

/
where H means the weak-direct product.
As in [13], one can understand the Adele ring Ag as a measure space equipped
with the product measure,

= X
ke pG’Poo‘up

where p1), are the Haar measures on Q,,, for all p € P, and po is the usual Lebesgue
measure on Qo, = R. So, the finite Adele ring Ag of (2.16) can be regarded as
a measure space equipped with the measure

= X 2.18
W pepﬂp ( )

on the o-algebra o(Ag) of Ag.
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Similar to the x-algebras M, for p € P, one can define the x-algebra Mp by
Mp=C[{xy:Y €0(4g)}], (2.19)

where £ is the measure (2.18) on the finite Adele ring Ag.
By the definition (2.19), f € Mp if and only if

f= Z Sy Xy, with sy € C, (2.20)
Yeo(Ag)

where > means the finite sum. Thus, one obtains the (finite-) Adelic integration of
fe Mp by

/fdu= > tyu(Y), (2.21)

whenever f is in the sense of (2.20) in Mp.
By the Adelic integration (2.21), one can naturally define a linear functional ¢
on Mp by

e(f) = [ fdp. (2.22)
/

Equivalently, one can have a free probability space (Mp, ) in the sense of [12]
and [14].

Definition 2.4. Let Mp be the x-algebra (2.19), and let ¢ be the linear functional
(2.22) on Mp. Then the free probability space (Mp, ) is called the finite-Adelic
(*-)probability space.

Remark 2.5. Remark that the term, finite-Adelic “probability” space (Mp,¢), does
not mean it is a “probability-measure-theoretic” object. Moreover, since Mp is commu-
tative, the pair (Mp, ) is not a traditional (noncommutative-)free-probability-theoretic
structure, either. However, the construction of the mathematical pair (Mp, ¢) is fol-
lowed by the definition of (noncommutative) free probability spaces in free probability
theory (well-covering commutative cases). To emphasize the construction, and to use
this structure in our future research, we regard (Mp, ) as a free probability space,
and name it the finite-Adelic probability space, even though it is not traditional both
in the measure-theoretic analysis and in free probability theory.

Recall that our finite Adele ring Ag is a weak-direct product of {Q,},ep by (2.17),
ie.,
/
Ag =[] @
peP

and hence, Y € 0(Ag), if and only if there exist N € N, and p1,...,pn € P, such that

Y = H Sp, where S, € 0(Q,), (2.23)
peP
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with
S :{Spc@p itpe{pr, ..., ok,

Ly otherwise,

for all p € P. Thus, if Y € 0(Ag), then

v (xv) :/XYdu:/xH s,

2 Aq

Q

=K Hsp :Hﬂp(‘sp):H /Xspdﬂp )

pEP pEP pEP Qp

since = X
peP

= (TT1 =" (50) || )

a€P\ {p1,--pn}
by (2.23)
=TTt =1 (S0) = TT1 =1 (0 (x5, ) ) - (2.24)
since pq (Zq) =1, for all ¢ € P.

Proposition 2.6. Let Y € o(Ag) satisfy (2.23), and let xy be a free random variable
in our finite-Adelic probability space (Mp, ). Then

po) =TI X (pll - p}) 7 (225)

foralln € N, where Tfp’ are in the sense of (2.10), forall j € Asg,, , foralll =1,...,N.

Proof. Let Y be a p-measurable subset of Ag satisfying (2.23). Then the p-measurable
function xy satisfies that

Xy =XyAYyn...... ny = Xv,

n-times

for all n € N. So,

n

e(xy) =¢xy) =

=

(on (x5..)).

by (2.24), for all n € N. Therefore, by (2.10), we obtain the free-moment formula
(2.25). O

~

1
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By (2.25), if
f= Z Sy Xy, with sy € C,
Yeo(Ag)
in Mp, where Y satisfy (2.23), then

= st (11
w(f)z/fduz >oosv [T Do =™ <pf_pj+1> : (2.26)
Ag

Yeo(Ag) =1 \s€Asy 1 1

The formula (2.26) illustrates that the formula (2.25) provides a general tool to
study finite-Adelic calculus.
Notice that ,
Mp =[] M,

pEP

where H/ means the weak-direct (or weak-tensor) product of x-algebras. The isomor-
phism theorem (2.27) holds because of (2.17) and (2.23).

Theorem 2.7. Let (Mp,p) be the finite-Adelic probability space. Then

Mp = H/ My, and p = H ©p, (2.27)

pEP peEP

where My, are in the sense of (2.6), and p, are the p-adic integrations on M,,
for allp e P.

Proof. The #-isomorphism theorem of Mp in (2.27) is proven by (2.17) and (2.23).
The equivalence for ¢ in (2.27) is guaranteed by (2.18) and (2.25). O

3. ANALYSIS OF (Mp, p)

In this section, we consider functional-analytic properties on our finite-Adelic prob-
ability space (Mp, ). In particular, such properties are represented by the distri-
butional data from elements of (Mp, ) under free-probability-theoretic language,
free moments. As application, we show relations between our free moments and the
Euler-totient-functional values.

Let (Mp, ) be the finite-Adelic probability space. From constructions, one can
get that /

Mp = H M,, and ¢ = H ©p, (3.1)
peEP peEP

by (2.27), where ¢, are the p-adic integrations on Q,, for all p € P (and hence,
¢ is the Adelic integration on Ag). So, by abusing notation, one may/can re-write the
relations of (3.1) as follows:

(Mp, ) = [] Mps ). (3.2)

peP
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Recall that, in [5, 6] and [8], we call (M,,p,) the p-adic probability spaces,
for all p € P.

Here, we concentrate on computing free distributions of elements generated by
generating elements of Mp.

Theorem 3.1. Let Y1,...,Y, € 0(Aq), and xy, € (Mp, ), forl =1,...,n, for
some n € N. Then there exist a unique “finite” subset P, of P, and

X, € 0(Qyp), for allp € P,
such that
N x, (1 1
14 HXYz = H Z L 117 - W ) (3.3)
=1 pe€P, \JjEAX,

where rj-(" are in the sense of (2.10), and Ax, are in the sense of (2.8).

Proof. Let Y7,...,Y, be u-measurable subsets of the finite Adele ring Ag, for n € N.

So, by (2.23), for each Y;, there exist a unique N; € N, and p; 1, ..., p; N, € P, such
that
Y; =[] S; with S} € 0(Q,), (3.4)
peEP
and

gi Sioifpe{pit, ... i}
P Z, otherwise,

forallpe P, foralli=1,...,n.
If we let h:Hl]ilxyl, and h; = xy;, for I =1,...,n, then

p(h)=¢ (H h) =¢(xv.), (3.5)
i=1
where
(- () - 11 (As) 5
i=1 i=1 \peP peP \i=1
in 0(Ag).
For the p-measurable set Y, of (3.6), there exists a subset Py, of P,
Pyo = U{pi’l’ S ’pLNi} in 73, (37)
i=1
such that
n 4 SZZ) if pE PYO,
EEESS (3.8)
i=1 N\ Z, =Z, otherwise,
i=1

for all p € P.
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Remark that either

ﬂS;;éZp or ﬂS’;:ZP,
i=1 i=1
in (3.8), case-by-case, for p € Py,. However, in general, the equality (3.8) holds with
respect to Py, of (3.7).

Therefore, the formula (3.5) goes to

ph)=¢0) = IT e |xo | T m (ﬁ%)

pEPy, _ﬂl » | pePy, i=1
i=

by (2.25)

LT G|

PEPyY, | JEA n

i
s
i=1

by (2.10), where 7; are in the sense of (2.10), for all j € Amn gi» where Aﬂ g are
i=1 P i=1 P

in the sense of (2.8), for all p € Py, in P.
Therefore, if we take
P, = Py, of (3.7)

and N
X, = ﬂ S; in Qp for allp € Py,,
i=1
then the formula (3.3) is well-determined. O

The above joint free-moment formula (3.3) characterizes the free distributions
of generating elements of our finite-Adelic probability space (Mp, ).
As a corollary of (2.25) and (3.3), one obtains the following result.

Corollary 3.2. Let Y € 0(Ag), satisfying that Y =[] p Sp with S, € 0 (Qp),

{8? ifp=p, forl=1,...,N,
5, = %

Z,  otherwise,

(3.9)

for all p € P, for some p1,...,pn € P, for ki,...,kn € Z, for N € N, where 851’ are
the k;-th boundary of basis elements U,f; = pf’Zm of Qp,, foralll=1,...,N. Then

Nl 1
e(xy) = H <kz - W) (3.10)
1=1 \P1 D

for alln € N.
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Proof. The proof of (3.10) is done by (2.25) and (3.3). Indeed, if Y satisfies the
condition (3.9), then

N N/ 1
e (xv) =[] en (Xag;) =11 (m - W) :
=1 ’ 1=1 \Pi b
Therefore, since x§ = xy, for all n € N, the free-moment formula (3.10) holds. O

By (3.3) and (3.10), we obtain the following corollary, too.
Corollary 3.3. Let Y, =] Sl e o(Ag), forl=1,...,n, for some n € N, where

peEP ~p
ort if pr € e, ,
Sé: Eepy 1 if i '{pl,l pz,Nl} (3.11)
Ly, otherwise,

where agp are the ky-th boundaries for k, € Z in Q,, for p € P, and where
kp,1y--  kp, N, €Z, foralll =1, ..., n, all p € P. Now, let

n
Po = U{pl,h cee 7pl,N1} inP.
=1

Then one obtains that

. 1 1
2 (Hm) = 1w <k - k+1) ! (3.12)
=1 peP, p p
where p*» are in the sense of (3.11), where
1 if NS, #9,
=1

0 otherwise

(/Jp:

for allp € P,.
Proof. The proof of (3.12) is done by (3.3) and (3.10), under the condition (3.11). O
Let Y; € 0(Ag) be in the sense of (3.11), for i =1,...,n, and let

X =[x € Mp.¢). (3.13)
=1

Such free random variables X of (3.13) are called boundary-product elements of
the finite-Adelic probability space (Mp, ¢).

As we have seen in (3.12), if X is a boundary-product element of (Mp, ), then
there exists a subset P, of P such that

1 1
<P(X)—pr(kp—kp+1),
veP, p p

for some k, € Z (in the sense of (3.10)), for all p € P,, where w), is in the sense
of (3.12).
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Definition 3.4. Let X be a boundary-product element (3.13) of (Mp, ). Assume
now that Y; are in the sense of (3.11), and P, is in the sense of (3.12). Assume further
that, for all p € F,, the corresponding integers k, are nonnegative, i.e.,

kp >0, for allp € P,. (3.14)

Then we say this boundary-product element X is a (+)-boundary element
of (Mp, ), i.e., X is a (+)-boundary element if and only if, (i) X is in the sense of
(3.13), and (ii) the corresponding finite subset P, of P satisfies the condition (3.14).

Remark 3.5. In the rest of this section, we focus on studying (+)-boundary elements
(3.14) of the finite-Adelic probability space (Mp, ). As we have seen in (3.3), the
free-distributional data of xy, for an arbitrary p-measurable subsets Y of Ag, are
determined by the free distributions (3.10) of boundary-product elements, or those
(3.12) of of their operator products. So, it is reasonable to restrict our interests
to investigate free-distributional information of boundary-product elements (3.13)
for studying free distributions of arbitrary elements of the finite-Adelic *-algebra
Mp, under the Adelic integration ¢. However, as we checked, the free-probabilisitc
information (3.12) is determined by w,, by the chain property in (2.3), i.e.,

o ifk,>0in Z,
O NLy=1Q ko P
P @ ifk,<0inZ
for all p € P, where @ means the empty set.
It shows that if a boundary-product element X has a finite subset

Po:{peptagp;ézp}of’l?,

partitioned by
P,=P UP,,

where
Pf={peP,:k,>0inZ},

and
P ={qeP,: k,<0inZ},

equppied with P, # &, then the formula (3.12) vanishes by the role of w, for ¢ € P, .

Therefore, to avoid such vanishing cases, one had better focus on the cases where
we have (4)-boundary elements satisfying (3.14), rather than whole boundary-product
elements in (Mp, ¢).

As we discussed in the above remark, one can realize that such (+)-boundary
elements provide certain building blocks of the “non-vanishing” free distribution (3.3)
(under certain additional multiples). So, it is natural to concentrate on studying free
distributions of such elements in the finite-Adelic probability space (Mp, ©).

Let ¢ : N — C be the Fuler totient function defined by an arithmetic function,

¢p(n) =k eN|1<k<n,ged(n, k) =1}, (3.15)
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for all n € N, where |\S| mean the cardinalities of sets S, and ged means the greatest
common divisor. It is well-known that

om)=n| [ (1 — ;) for all n € N, (3.16)

pEP, pln

where “p | n” means “p divides n,” or “n is divisible by p.” For instance,
o) =p-1=p(1-1)
p)=p—1=p -
p

for all p € P, by (3.15) and (3.16).
Remark that the Euler totient function ¢ is a multiplicative arithmetic function
in the sense that

¢(n1n2) = ¢(n1)¢(n2), (3-17)
whenever
ged(ng,na) =1

for all ny,ny € N.
If p1 # po in P, then, for any ny,ne € N,

ged (p1", pp°) =1,
and hence,
], M2 N1 9o ny _no 1 1
¢ (p1'py?) = o (1) ¢ (p5°) =pi'py* (1— — ) (1— = ],
4! p
by (3.16) and (3.17).

Theorem 3.6. Let X be a (+)-boundary element (3.13) of the finite-Adelic probability
space (Mp, o) satisfying (3.14). Then there exist the subset P, of P, and

K,={k,eNo:peP,} of Z,
where Ng = NU {0}, such that

nx = H pkp € N7
pEP,

1
- Il ; 3.18
0<TX_ pkp_;’_l Slan, ( )
PEP,

o(X) =rxd(nx).

Proof. Let X be a (+)-boundary element (3.14) in (Mp, ). Then, by (3.12), there
exist the subsets P, of P, and K, of Z, such that

- ()

pEP,

with k, € K,, with k, > 0 in Z.
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Observe that

where

by (3.15), (3.16) and (3.17). O

The above theorem, especially, the relations in (3.18), characterizes the free distri-
butions of (4)-boundary elements of (Mp, ), in terms of the Euler-totient-functional
values. So, it illustrates the connections between our free-probabilistic structure and
number-theoretic results.

If X is a (+)-boundary element (3.14) in (Mp, ), then there exist

0<rx <1inQ, andnyx € N,

such that

e(X)=rxonx) < onx)= M,

rx

by (3.18). Observe now a converse of the above theorem.
Theorem 3.7. Let n € N be prime-factorized by

n=p" Py pyY inN, (3.19)
where p1,...,pn € P, and kp,,...,kpy € N, for some N € N. Then there exists
a (+)-boundary element X of the finite-Adelic probability space (Mp,p) such that

X =] xv, € Mp,¢), (3.20)

peEP

having

Po:{plv"'7pN}CPa
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K, = {k‘pl,...,kij} C No,

and
}/p — agp pr 6 }.307
Z,  otherwise
for all p € P, satisfying that
¢ (n) = npnp(X), withn, = H p€eN. (3.21)

pEP,

Proof. Let X be a (+)-boundary element (3.20) in (Mp, ). Then

o (X) = HO%(XBi) - Hopif’ (1_11’)

e | | Lo (1)

PEP, pePt

like in the proof of (3.18)

pEP,
where n is given as above in N

1 1
= <k> H]; (¢(n))

P
HPEPop peP,

- () (Hi}?) (6().

Therefore, for any n € N, with its prime-factorization (3.19), there exists
a (+)-boundary element X of (3.20), such that

o(X) = Lqﬁ(n ), with n, = H p € N.

npn veP,
Therefore, one can obtain the relation (3.21), whenever n of (3.19) is fixed in N. O

The above two theorems provide a connection between number-theoretic results
from the Adelic analysis and arithmetic function theory, and our free-probabilistic
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results on the x-algebra Mp. In particular, the above two theorems show that: n € N
if and only if there exists X € (Mp, ) such that

¢(n)

o(X) =n, n

for some n, € N,

by (3.18) and (3.21).

4. REPRESENTATION OF (Mp, ¢)

Let (Mp, ) be the finite-Adelic probability space,

M) = T[] Mpsp) = | T Mo T 0 | - (4.1)

peP peEP peEP

In [5,6] and [8], we established and studied Hilbert-space representations (£),, o)
of the -probability spaces (M,,¢,), for p € P. By (4.1), one can construct
a Hilbert-space representation of Mp with help of the representations,

($p, af) of My s, for allp € P.

Define a form

[~,~] :Mp XMP —C
by
1, fo] < / fifsdu,  fi,fa € Mp. (4.2)
Ag

Then, by the definition (4.2), this form [, -] is sesqui-linear:

[t1f1 +tafo, f3] = talf1, f3] + ta[fa, fo]

and
[f1 t1fo +taf3] = ti[f1, fo] + t2[f1, fol (4.3)
for all t1,t2 € C and f1, fo, f3 € Mp. Now, observe that
Ui, fol = [ fifsdu= | (fof ) du= [ faff du=[fa, fi] (4.4)
[ s ]

for all f1, fo € Mp.
Let Y € 0(Ag) and t € C, inducing f = txy € Mp. Then

e / Fitdp = / 2 xydpe = [t u(Y) > 0,
Ag

Ag
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where |t| means the omdulus of t in C, and hence,
[h,h] >0, for all h € Mp (4.5)
For f =txy € Mp, assume that
[f f] = 0= |t u(Y) = 0
— |t|2 =0oru(Y)=0<«<=t=0o0rY =@, the empty set in Ag,

because 1 = X pip,, and p,, are the Haar measures on Q,, for all p € P (e.g., see (4.1))
peEP

< f=0-xy =0or f =txg =0,

where O means the zero element of Mp.
In other words,

[txy,txy] = 0if and only if tyy = O in Mp.

Therefore, one has

[f,f]l=0<= f =0 in Mp. (4.6)
Proposition 4.1. The form [-,-] of (4.2) on the finite-Adelic x-algebra Mp is an inner
product. Equivalently, the pair (Mp, [,-]) forms an inner product space.

Proof. The form [-,-] of (4.2) is an inner product on Mp, because it satisfies (4.3),
(4.4), (4.5) and (4.6). O

Let [+, -] be the inner product (4.2) on the *-algebra Mp. Define now the norm |||
and the metric d on Mp by

Ifll = 1f, fl, for all f € Mp, (4.7)

respectively
d(f1, f2) = lfr = foll, for all f1, fo € Mp. (4.8)
Definition 4.2. Let d be the metric (4.8) induced by the norm ||-|| of (4.7) on the
inner product space (Mp, [,-]). Then maximal d-metric-topology closure in Mp

is called the finite-Adelic Hilbert space, and we denote it by Hp.

By the very definitioin of finite-Adelic Hilbert space Hp, the x-algebra Mp is
acting on Hp via a linear morphism « : Mp — B (Hp),

a(f)(h) = fh, for all h € Hp, (4.9)

for all f € Mp, i.e., the algebra-action « of (4.9) assigns each element f of Mp to
the multiplication operator «(f) with its symbol f in the operator algebra B (Hp)
(consisting of all bounded linear operators on Hp).

Notation 4.3. For convenience, we denote a(f) by ay, for all f € Mp, where o
is in the sense of (4.9). Moreover, let us denote a(xy) = ay, simply by ay, for all
Yeo (AQ)
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By the definition (4.9), for any fi, fo € Mp, one has
oy f, = o p, on Hp, (4.10)

and
(af)" = ap- for all f € Mp. (4.11)

Theorem 4.4. Let Hp be the finite-Adelic Hilbert space, and let o be in the sense
of (4.9). Then the pair (Hp, «) is a Hilbert-space representation of the finite-Adelic
x-algebra Mp.

Proof. Tt suffices to show that the linear morphism « of (4.9) is a well-determined
*-homomorphism from Mp to the operator algebra B(Hp). Note that, by (4.10) and
(4.11), « is indeed a *-homomorphism from Mp to B (Hp). O

By the above theorem, one can understand all elements f of Mp as a Hilbert-space
operator oy on Hp.

Definition 4.5. Let (Mp, ) be the finite-Adelic probability space, and let (Hp, «)
be the representation of Mp of the above theorem. Then we call this representation,
the finite-Adelic representation of Mp. Define now the C*-subalgebra Mp of the
operator algebra B (Hp) by

Mp = C* (Mp) < Tla (Mp))], (4.12)

where X mean the operator-norm-topology closures of subsets X of B (Hp). We call
this C*-subalgebra, the finite-Adelic C*-algebra.

5. FUNCTIONAL-ANALYTIC PROPERTIES ON Mp

In this section, we study functional-analytic properties on the finite-Adelic C*-algebra
Mp of (4.12) under suitable free-probabilistic models. Such properties are determined
by the analytic data of Section 3, implying number-theoretic information.

Let (Mp,p) be the finite-Adelic probability space, and let (Hp, «) be the
finite-Adelic representation of Mp. Let Mp be the finite-Adelic C*-algebra (4.12)
of (Mp, ) under (Hp, o). In this section, we will consider free-probabilistic data on
the C*-algebra Mp by constructing a system of suitable linear functionals on Mp.

Define a linear functional ¢, ; on Mp by

pi(T) = [T (XBf)v XB]’.’} , forall T € Mp, (5.1)

for all p € P,j € Ny, where
Ny “ Nu {0},

and

Bf = H Y, in o (Ag)
qeP
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with

D e
Y, = 0; ifq=p,
Zq otherwise

for all ¢ € P, i.e.,
XB;’ = XZoXZsXZ5X...X 85.’ x . €Hp

p-th position

for p € P and j € Ng.

Remark 5.1. In the definition (5.1), remark that we only take j from Ny, not from Z.
The reason is as follows: Let Y € 0(Ag), with

Y = H Sq7 where Sq co (Qq)a

qeP

where there exists a finite subset

Py ={p1,...,pn} of P, for some N € N,

satisfying
Py = P}f U Py
such that
Py ={q€ Py :ky;>0inZ},
and
Py, ={qge Py :ky;<0inZ},
where

q .
Sq: 3kq lfqel?y,
Zq otherwise
for all ¢ € P. (See (5.6) below.)

Also, let Bf be in the sense of (5.1), where p € P, and “j € Z.” Assume first that
j<0in Z, and p ¢ Py in P. Then

YﬂB;-]:(SQOZQ)X(S3QZ3>X...X (Zpﬂaf) X ...

p-th position

=(S2NZy) X (SsNZs) x...x (&) X...,

p-th position
in Ag, by the chain property in (2.2), which will gives

p.jlay) =0, by (5.1).

(Also, see (5.5) below.) It shows that, whenever j < 0 in Z, and p ¢ Py, one can get
vanishing free-moments.
Also, suppose that 7 < 0 in Z, and say p = p; € Py in P, for convenience. Then

VOB =Y OB = ($:02Z) x ox (9 Nl x ..,

p1-th position
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and hence,

op,jlay) ifk, =j<0,
i(ay) =6k, jopilay) =
op,j(ay) kp17.7<ppvj( Y) {0 it &y, >0,
by (5.1). (Also, see (5.5) below.)
So, for most of arbitrary choices of Y, the quantities ¢ («y) are vanishing.
Therefore, to avoid-or-overcome the above two vanishing cases, we determine our
system (5.1) of linear functionals

{30177.7 ‘b€ Pa] € NO}v

by taking j from Ny in Z.
Remark also that, even though we take a system

{opjpeP,“j €L’}

of linear functionals ¢, ; in the sense of (5.1), one can get similar results like our main
results of this Section (containing vanishing cases). However, we need to polish lots of
vanishing cases. Thus, our system of linear functionals would be chosen by (5.1) for
convenience.

Note that all vectors h of Hp have their expressions,

h = Z ty xy, with ty € C,
Yeo(Ag)

where > is a finite, or an infinite (limit of finite) sum(s) under the Hilbert-space
topology induced by the metric (4.8).
Note also that every operator T' of Mp has its expression,

T = Z syay, with sy € (C,
Yeo(Ag)
where > is a finite, or an infinite (limit of finite) sum(s) under the C*-topology for
Mp, and where ay are in the sense of Notation 4.3.

Therefore, the linear functionals ¢, ; of (5.1) are well-defined on Mp, and hence,
one can get the corresponding C*-probability spaces

i denote
MET ' (Mp, @y5), (5.2)

for all p € P,j € Np.

Definition 5.2. Let M%j = (Mp, pp,j) be a C*-probability space (5.2), for p € P,
j € Ng. Then we call M7, the (p,j)(-finite)-Adelic C*-probability space of the
finite-Adelic C*-algebra Mp.
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In the rest of this section, let us fix p € P and j € Ny, and the corresponding
(p, j)-Adelic C*-probability space M7 of (5.2).
Consider first that, let ay = a,, € Mp”?, for Y € 0(Aq), satisfying

Y =[] S with S, € 0(@y), (5.3)
qeP
where
5 = {Sq + 7, ifge Py,
Z, if ¢ ¢ Py,
where

Pyr={qeP:5,#Z,} inP.
Then we have
Ppilay) = [OZY(XB;’), XB;’}

where B is in the sense of (5.1) in o (Ag)

= [XYXva XB_f] = {XYﬂBf; XB_f}

= /XYmB;?XEfdMZ /XYmBJPXdeM

Ag Ag
= /XYﬂBmede: /XYnB;’d# (5.4)
Ag Ag
=u (Y NBj)
HqGPY Hq (Squq)) ('up (aj))) 1fp¢PYa

HqGPy\{p} Hq (SqﬂZq)) (,U/p (Spﬂaf)) lpr PY

Note again that the formula (5.4) is obtained because we take j in Ny (not in Z: if
j < 0, then the above formula (5.4) vanishes). By (5.4), we obtain the following result.

Theorem 5.3. Let oy be a free random variable in the (p,j)-Adelic C*-probability
space M, where Y € o (Ag) is in the sense of (5.3). Then

¢ (ay) = H tq (Sq N Zq) (Mp (Sp n 8?)) ) (5.5)
a€(PyU{pH\{r}

for all n € N.

Proof. Let ay be as above in M%j. Then

ay = (aXY)n = Qyn = Qyy = Qy,
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in M%j, for all n € N. So,
¢pj (@F) = (ay), foralln € N.

The quantity ¢(ay) is obtained in (5.4), re-expressed simply by (5.5). Note that
the formula (5.5), indeed, implies the two cases of (5.4) altogether. O

Now, let Y be in the sense of (5.3), with specific condition as follows;

Y =[] S with S, € 0(@Qy),

qeP

where
g .
=2 dien
for all ¢ € P, where k, € Z for ¢ € Py, and
Py ={p1,...,pn}in P, for some N € N.

If Y is in the sense of (5.6), then the corresponding free random variable ay of
the (p, j)-Adelic C*-probability space M2’ satisfies that

p(af) = [T ma(98,02Z) ) (e (5,01 09))
q€(Py U{p})\{p}

by (5.5)

[ery 1a (9%, 024) ) (1p (20)) ifp ¢ Py,
yery p) Ha (a 7)) (u (9, 007)) ifpe Py,

(quPy Hq (8 Nz )) (1p (97)) if p& Py,
6j7kp ﬁfpj% ( qepy\{p},uq( ZLq if p € Py,

for all n € N, where § means the Kronecker delta.
Therefore, one obtains the following corollary of (5.5), with help of (5.7).

Corollary 5.4. Let Y be in the sense of (5.6) in o (Ag), and let ay be the corre-
sponding free random variable of the (p,j)-Adelic C*-probability spae M. Then

. 11
opj(ay) =05y (pj - pJH) H Hq (agq qu) ) (5.8)

q€Py\{p}
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for all n € N, where

djk, ifp€ Py,
Oy = ,
1 otherwise,

where Py is in the sense of (5.6).

Proof. The free-moment formula (5.8) holds by (5.5) and (5.7). If we simplify the
expression (5.7), then the formula (5.8) is obtained. O

Note that the operator ay of the above corollary is nothing but an operator induced
by a boundary-product element xy of the finite-Adelic probability space (Mp, ),
and hence, they provide building blocks of free distributions of all operators in Mp
from (5.8). So, as in Section 3, we focus on studying free-distributional data of these
operators ay for investigating free distributions of all operators of Mp.

Definition 5.5. Let ay be the operator of the finite-Adelic C*-algebra Mp,
generated by the py-measurable subset Y of (5.6). Then we call such an operator ay
a boundary-product operator of Mp.

As we discussed above, in the rest of this paper, we focus on studying
free-distributional data of certain operators of Mp, generated by boundary-product
operators ay’s in M%7, for all p € P, and j € Ny, where Y are in the sense of (5.6)
in U’(AQ).

Note that, if Y is in the sense of (5.6) and if

k, € Ny in Z, for all p € Py, (5.9)
then it is regarded as
Y = [ Bl ino(Ag), (5.10)
q€ Py

where ng are the p-measurable subsets of Ag in the sense of (5.1), for ¢ € Py and

for now k, € Z, where Py is the subset (5.6) of P. Note that the above set-equality
(5.10) holds only if the condition (5.9) of Y is satisfied.
Therefore, the corresponding boundary-product operator ay is understood as

ay =a g = H aps (5.11)

qEPy gePy
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in M%j, under (5.10). So, one can get that

epjlay) = ‘Pp,j< H O‘ng>

pEPy
by (5.10)
= [( H aBZq) (XBf), XBf]
pE Py

:[X N ng»XBJ?]

q€Py N{p}

by identifying k, = j in Ny

1 1
o | T m(t)) = | T (- gm) )

g€ Py U{p} g€ Py U{p}

where d;y is in the sense of (5.8). Therefore, from a different approach from (5.9),
we obtain the following special case of (5.8).

Corollary 5.6. Let Y be in the sense of (5.6) with additional condition (5.9) in
o(Ag), and let ary be the'corresponding boundary-product operator in the (p, j)-Adelic
C*-probability space ME?, for p € P, and j € No. Then

ay = H aps in Mp,

qePy !

and
. 1 1
opj (ay) =05y H <qk‘1 - qkqﬂ> ) (5.13)

q€Py U{p}
with identification: k, = j in Z, for all n € N, where 6;y is in the sense of (5.8).
Proof. The operator-identity in (5.13) is shown by (5.11), and the free-moment for-

mula in (5.13) is proven by (5.8) and (5.12), since o} = ay in Mp, for all n € N,
for all p e P,j € Np. O

Now, let Y and let Py be in the sense of (5.6) (not necessarily with (5.9)). Then
Py is partitioned by
Py =PI UP, inP, (5.14)
where
P} ={q€ Py :ky>0inZ},
and
P, ={qe Py :ky,<0inZ}.
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Then the formula (5.8) can be refined as follows with help of (5.13).

Theorem 5.7. Let Y be in the sense of (5.6), inducing a finite subset Py = P;,' UPy
of P, as in (5.14). If ay € M}, for p € P,j € Ny, then

0 if Py # o,
for all n € N, where @ means the empty set.
Proof. Suppose ay be given as above in M%j . Assume first that
Py, #@in Py C P,

and let
P; :{Qh"'aqt}) for SometSNinI\L
ie, kg, <0in Z, for all s =1,...,t. Then
YNBY = (SN Z) X ... % (ag; mqu) X ... % (a;g; mzqt) o

q1-th position q+-th position

=(SoNZa) X ...x (D)X ...x (&) X ...,
by the chain property of Qg, in (2.2), for s=1, ..., ¢, in Ag. Thus,
Pp.j (ay) = p(ay) =0,

by (5.8), for all n € N.
Assume now that Py, = &, equivalently, suppose Py = P;f in P. Then, by (5.13),
one obtains that

1 1
ested)=a | T (55 - 7o)

q€P;U{p}

for all n € N, where

Sjk, ifpePf =Py,
Oy = r .
’ 1 otherwise,

by (5.13).
Therefore, the refined free-moment formula (5.15) of (5.8) holds. O

The above free-distributional data (5.15) shows that, all y-measurable subsets Y
inducing non-empty subset Py, generate non-zero operators oy in our (p, j)-Adelic
C*-probability spaces Mp”, having vanishing free distributions, for all p € P and
j € Np.
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Assumption and Notation 5.8 (in short, AN 5.8 from below). Let Y be in the
sense of (5.6) satisfying (5.14), and let «y be the corresponding boundary-product
operator in the finite-Adelic C*-algebra Mp. In the rest of this paper, we automatically
assume

Py, = &, equivalently, Py = P{/" ,

i.e., from below,
Py ={q€P:k,>0inZ} = Py,

to avoid the vanishing cases in (5.15).

To avoid confusion, we will say such boundary-product operators ay are
(+)-boundary(-product) operators of Mp. The notation is reasonable because such
(4)-boundary operators ay are induced by (+)-boundary elements xy of Mp.O]

From below, all boundary-product operators would be (+)-boundary operators of
AN 5.8 in Mp. Again, notice that all boundary-product operators ay, which are not
(+)-boundary operators in M7’ have vanishing free distributions, for all p € P, and
J € Ny, by (5.15). So, we focus on studying free-distributional data of (+)-boundary
operators in (p, j)-Adelic C*-probability spaces M%7, for all p € P,j € Np.

Theorem 5.9. Let ay be a (+)-boundary operator of AN 5.8 in the finite-Adelic
C*-algebra Mp. Let us understand oy as a free random variable in the (p, j)-Adelic
C*-probability space MZ?, for p € P, and j € No. Then there exist

ny = H q~a, with identification: k, = j in Ny,
a€ P u{p}
in N, such that
n Sy
wp.j (ay) = 37’_¢(np7j), for alln € N, (5.16)
nyNp,j

where
npi= 1] aimN

qePFu{p}
where 0,y 1s in the sense of (5.8), and ¢ is the Euler totient function.

Proof. Recall that, for a fixed p € P, j € Ny, if Y is a p-measurable set of Ag, satisfying
both (5.6) and (5.9), then the corresponding operator ay forms a (+)-boundary
operator of AN 5.8 in M%7, and it satisfies

1 1
enilay) =dv | 11 ( - qkq+1) : (5.17)

k
g€ Py U{p} a
with identification: k, = j in Z, since Py = P{f, where
s . 5j,kp iprPy:P;/L,
3Y = .
1 otherwise,

by (5.8) and (5.13).
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Then, one can re-write the formula (5.17) as follows:

1 1
epilay) =0y | 1 <_qkq+1)

kq
q€Py,, q

k
_ q 1
“or [ 1 g ()

q€Py,p
1\ /1 1
=i [ 11 () ()| T (2 )
q€Py,, qEP+

1 1
-0 (57) (55) 0

ny = H qkqa Npj = H q,

q€Py qEPy p

where

in N, and hence, it goes to

—@-,y( ! )qb(np,j), (5.18)

nyan'
for all n € N. O

The above two theorems illustrate relations between our C*-probabilistic structures,
and number-theoretic information by (5.15) and (5.16). Also, they show a conncetion
between the x-probabilistic data (3.21), and the C*-probabilistic data (5.18), whenever
Py = P;/r in P.

In the rest parts of this paper, we study (+)-boundary operators ay of AN 5.8
in the finite-Adelic C*-algebra Mp, and the free distributions of certain operators,
generated by these (+)-boundary operators, in (p,j)-Adelic C*-probability spaces
Mz for all p € P and j € Z.

6. DISTRIBUTIONS INDUCED BY (+)-BOUNDARY OPERATORS

The main purposes of this section is to consider free-distributional data of (+)-boundary
operators which provide the building blocks of operators in Mp having possible
non-vanishing free distributions.

Let Mp be the finite-Adelic C*-algebra generated by the finite-Adelic probability
space (Mp, ) under the finite-Adelic representation (Hp, «), and let

Mp? = (Mp, ¢p.5)

be the (p, j)-Adelic C*-probability spaces (5.2), for all p € P, j € Np.
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Let Y =[[,cp Sy = fll Bl be p-measurable subsets of the finite Adele ring Ag
qgePy ™1

in 0 (Qq), where
B,Zq:ngZ;;x...x@Zq X oo
g-th
in Ag, and
Py ={qeP:S5,=0}

is a finite subset of P. Equivalently, the subsets Y of Ag are in the sense of (5.6).
Moreover, assume that Y satisfies the condition (5.9) as in AN 5.8, too, i.e.,

Py =P < P, =ginP.

Then the corresponding (+)-boundary opeartors ay are well-determined in Mp.
Recall that if oy is a (+)-boundary operator in the sense of AN 5.8, then, as a free
random variable in a (p, j)-Adelic C*-probability space M7”, one obtains

5.
o (o) = #anm) for all n € N, (6.1)
p,J

by (5.15), (5.16) and (5.18), where ¢ is the Euler totient function (3.14) and where

5y = 5j,kq iprPy:P{/‘—,
7 1 otherwise,

ny = H ¢" and Np,j = H qin N,
q€Py,, q€Py,,

where
Py, = Py U{p} = P} U{p},

which is a finite subset of P.

Now, let Y1,..., Yy € 0(Ag) be in the sense of (5.6) with (5.9), and let ay; be
the corresponding (+)-boundary operators in Mp, for all l = 1,..., N, for N € N.
Define a new operator 71, n € Mp by

N

T, .N= HOéY, € Mp. (6.2)
=1

By the very construction (6.2) of T, n, one can get that

N
Ty N:HayzaN = H Qpa 6.3
eees 1 1 Ny, quv ( )
= 1=1

n
q€ U Py,
=1

in Mp, “under (5.9)”. (Remark that, without the condition (5.9), the relation (6.3)
does not hold, in general, because of the vanishing cases.)
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The observation (6.3) shows that there exists a y-measurable subset Y7,y of Ag,

Yi. . n= H ng in o(Ag), (6.4)
9€Py;  §
such that
Tl-,--wN =0y N in MPv (65)
by (6.4), where
PYl vvvv N:UPY’_UP;:_PE ,,,,, N
=1 =1

is a finite subset of P, where Py; are in the sense of AN 5.8, forall{=1,..., N.

Therefore, the p-measurable subset Y7,y of (6.4) also satisfies AN 5.8, and
hence, the corresponding operator T,y of (6.2) forms a new (+)-boundary operator
ay,,.. n in Mp, by (6.5). It shows that the products of (+)-boundary operators become
(+)-boundary operators in Mp.

Lemma 6.1. Let T1 _n be the operator product (6.2) of (+)-boundary operators
ayy,...,oyy of AN 5.8 in Mp, for some N € N. Then there exists

Yi.
=1
such that
Ti..N=ay,  y€Mp, (6.6)
where ay, . is a new (+)-boundary operator in Mp.

Proof. The existence of the u-measurable subset Y7 . n is guaranteed by (6.3)
and (6.4), and the operator equality (6.6) is proven by (6.5). O

Since operator products of (+)-boundary operators are (+)-boundary operators
in Mp, by (6.6), we obtain the following free-probabilistic information.

Theorem 6.2. Let Ty, .y be an operator (6.2) in Mp. As a free random variable
in a (p, j)-Adelic C*-probability space M3, for p € P,j € No, we have that

. 1 1
Pp.j ((Tl,.u,N) ) = 0ivi,....~N H (qkq - qkq+1>
1, N

for all n € N, where

L uirh
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and

are the finite subsets of P, whenever

Vi,.v = [ Sy € o(Ag), with S, € o (Qy),

qeP
and where
Sy 5j7kq Z'fp € PYl ..... N
Y1, N = .
! 1 otherwise,
and
nYl ..... N = H q qa and npvj - H q,
9Py, N 9€Pyy  Nup
in N.

N
Proof. By (6.6), there exists Y1 n = lD1Yl € 0(Ag), such that Ty = ay,,

as a new (+4)-boundary operator in M%j . Since it is a new (4)-boundary operator,
one has

for all n € N. So, one obtains that

Pp (T, N)") = pj (T1,.N) = @pj (i )

by (5.13), where

and

is a finite subset of P, whenever

i, .n= H Sq, with S; € 0 (Qg),
q€P

and hence, it goes to

where

in N, by (5.18), where ¢ is the Euler totient function, for all n € N. Therefore,
the free-moment formula (6.7) holds. O
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Now, let B{ be in the sense of (5.1) in o (Ag), for ¢ € P, and “k € Ny”, i.e.,

B =1]] S

seP
with
ol if s =gq,
S, =% "o=d (6.8)
Zs otherwise,

in Qs, for s € P.

Then it provides the corresponding operator « pe in the finite-Adelic C*-algebra
Mp, as a (4)-boundary operator in the sense of AN 5.8 because k > 0 in Z, i.e.,
it induces

PBZ = {q} = P(Bg)+, with kq =k Z 0.

Let Bfll, cee ijvv be the py-measurable subsets (6.8) in the finite Adele ring Ag,
where p1,...,py are “mutually distinct” from each other in P, and j1,...,jn5 € Ny
(which are not necessarily distinct), for N € N. So, these sets automatically satisfy
AN 5.8. Now, let

Opuji = Oprt € Mp, (6.9)
be the corresponding (4)-boundary operators, for all I = 1,..., N. Construct now
a new operator

N
S=>ay in Mp, (6.10)
1=1
where a, ;, are in the sense of (6.9), foralll=1,..., N.

Observe that, if S is an operator (6.10) in Mp, then

S" = Z ( apzswjls>
(U1seesln)€{L,....N}™ \s=1 (6.11)
= Z QY i

(1, ln)€{l,...,N}™

where
n

}/ll,...,ln = m BZL: € 0’(14@)7
s=1
for all (I1,...,0,) € {1,...,N}™, for all n € N.
Remark that the summands ay;, of S™ in (6.11) form (+)-boundary opera-
tors, for all (Iy,...,1,) € {1,...,N}", for all n € N. Thus, we obtain the following
free-distributional data of the operators S of (6.10).

Corollary 6.3. Let S be an operator (6.10) in Mp. Then, as a free random variable
in the (p, j)-Adelic C*-probability space M7, for p € P, and j € Ny, it satisfies that

Pp.j (") = > > @i lavi, 1) (6.12)

(U seenln) €{L,e00 NJ7
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where oy, are in the sense of (6.11), and the summands oy, ; (ovy,, ) of (6.12)
are completely determined by (6.1), or (6.7), for alln € N.

Proof. The proof of the formula (6.12) is done by (6.11), (6.1) and (6.7). O

7. FREE PRODUCT C*-ALGEBRA OF {M%j}

In this section, we construct free product C*-algebra of the system {M%j Ypep ez,
and consider free-distributional data of free reduced words in the C*-algebra. From
this, one can not only study free probability induced by the finite Adele ring, but also
apply Adelic analysis as free-probabilistic objects.

In the previous sections, we used concepts and terminology from free probability
theory in extended senses (for our commutative structures). In this section, we study
(traditional noncommutative) free probability theory on our structures under free
product.

Let Mp be the finite-Adelic C*-algebra induced by the finite-Adelic probability
space (Mp, @) under the representation (Hp, «), and let

{ME = (Mp. o) p e P Mo} (1)

be the system of (p,j)-Adelic C*-probability spaces M%j of (5.2). In this section,
we consider free product C*-algebra of the system (7.1).
Recall that, if g are (+)-boundary operators aps in Mp, then

1 1 0
oni (@) =0 am | 11 (rkr - M) = 2lapd 4, (7.2)

NNy i
re{q.p} P

for all n € N, where

kr:{]? if r=gq,

j ifr=np,
in Z, and
5. )0k ifa=p,
dr{ap} 1 otherwise,
and
Ny = H rFr. and Npj = H r, in N,
re{q,p} re{q,p}
by (6.7).
Remark that the finite subset {q, p} in (7.2) satisfies

{e,p} ifq#p,

{e,p} ={at U{p} = {{p} ifq=p.

in P.
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Corollary 7.1. Let ay ) be a (4)-boundary operator (6.9) in M%’j, for p,q € P,
J,k € Ng. Then

n 1 1 5', »)
v (@) =0 am | 11 (rk - M) = 2lapd g, ), (7.3)

re{q,p} MeTp.j
for alln € N, where 0; (4 p}, M0, Np,j are in the sense of (7.2).
Proof. The formula (7.3) is a corollary of (6.7). See (7.2) above. O
By (7.3), one also obtains the following two corollaries.

Corollary 7.2. Let Mg’j be a (p,j)-Adelic C*-probability space, for p € P,j € Np.
Then

11 1
pi (0p;) = 5T Wﬂp), (7.4)

for all n € N.
Proof. Observe that

. 11 1 1 1
¥p,j (O‘p,j) = ¢p,j (ap,;) = o it = Pl (p <1 - p>> = pitl o(p),
by (7.3), for all n € N. O

Corollary 7.3. Let Mg’j be a (p,j)-Adelic C*-probability space, for p € P,j € Np.
If p# q in P, then

. 11 11 11
Pp.j (aq,k) = <q] - qJH) <pj - pj+1> = qj+1 pj+1 d)(qp)? (75)
for all n € N.
Proof. Since p # ¢q in P, by (7.3), one obtains that

Pp.i (O‘Z,k) = p,j (aq,k)
2! 11
= ch - g1 E o pitl
11 1 1
500
q° p’ q p
R 1 L
T R pitt qQ\+- q p\it- »

1 1
= gt (0(9) (6(p)) = W¢(qp)
11
= -—p(qp)-
q*p7 qp (ap)
for all n € N, where 4
nigpy = 4P, and n,; = gp, in N. 0

Indeed, the free-moment formula (7.3) is refined by both (7.4) and (7.5).
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7.1. FREE PRODUCT C*-PROBABILITY SPACES

Let (Ag,pr) be arbitrary C*-probability spaces, consisting of C*-algebras Ay, and
corresponding linear functionals ¢y, for k& € A, where A is an arbitrary countable
(finite or infinite) index set. The free product C*-algebra A,

A= % Al
leA

is the C*-algebra generated by the noncommutative reduced words in | J;c o Ar, having

a new linear functional
= x Q.
¥ lEA<p

The C*-algebra A is understood as a Banach space,

00 n
© (2 (s (2)) ™
n=1 \(i1,...,in)€alt(A") \ k=1

A =A;, ©C, forallk=1,...,n,

with

as closed subspaces of A;, , where
alt(A") = {(21,,Zn)|(ll,,ln) € An,il 7&7;2, o 7&’6.3,..., b1 #Zn},

for all n € N, and where the direct product @, and the tensor product ® are topological
on Banach spaces.
In particular, if an element a € A is a free “reduced” word,

n
Hail in A,
1=1
then one can understand a as an equivalent Banach-space vector

Na = g@ a;, in the Banach space A of (7.6),
=1

contained in a direct summand, Q% A¢_of (7.6). Note that this free reduced word a
k=1

n
and its equivalent vector 7, is regarded as an “operator” ® a;, in the C*-subalgebra
1=1

Scd;, =C @ ( ® A;.;> of A,
=1 k=1 "
where ®c means the tensor product of C*-algebras.

We call such a C*-subalgebra (}g(cAil of A, the minimal free summand of
=1

A containing a. It is denoted by Ala], i.e., Ala] is the minimal C*-subalgebra
of A containing a as a tensor product operator.
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We denote this relation by

equi

T ® a;, in Alal. (7.7)
=1

Notice that the equivalence (7.7) is satisfied in the minimal free summand A[a]
of A containing a, “not fully in A, in general”.
Remark that, if a is a free reduced word in A, then

i n k equi
ak E <® ail> ay L Ha” in Ala (7.8)

=1

by (7.7) (not in A, in general), for all k£ € N.

Let a = [, a;, be a free reduced word in A as above. The power a* in (7.8) means
the k-th power of @ in the minimal free summand A[a] of A. To avoid the confusion,
we use a different notation a(*), as a new free word (which is either non-reduced or
reduced, generally non-reduced),

in A.
For example, let a = a;,a,,a;, be a free reduced word for

(i1,12,11) € alt (A%),
as an equivalent vector or a tensor-product operator,

ai, @ a;, @ a;, in A[a]

Then ) )
3 equi 3equ 3 3 3
a - (ail ® aiQ ® aiB) - ailaigai17
in Ala], but
3) _ (3)
(l( ) = (a’ila’izail)
= @i, Ui, iy Gy iy Qi G, Qa4 (nOn-reduced)
_ 2 2
= G, Q4,07 Ay 05 Ay Qi (reduced)
in A, ie.,

3) 2 2
a( ) = ailai2ai1ai2ai1ai2ail,

is a free reduced word in A.
Similarly, one can use the terms

*
equi n equ1
a* = <®ail> = ®a; Ha” in Ala
=1

but

) — (a: ) g o
a’ = (aj, ...a;,)" =a; ...aj,a; , in A
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However, if a is a free reduced word in A with its length-1, i.e., a = a;, in A, then
a® =a™ in Ala] = A;, C A,
for all n € N, and
a* =a™ in Ala] = A;, C A.
Now, let

b= b € () (7.9)
=1

We say that an element b of (7.9) is a free sum in A, if all summads b;,,...,b;,
of b are contained in “mutually-distinct” direct summands of a Banach space A of
(7.6), as free reduced words (and hence, the summands b;,,...,b; are free from each
other in (A4, ¢)). Then, similar to the above observation, one can realize that

in the direct summand & Alb;,] in A, where A[b;,] are the minimal free summands of
=1

A containing b;,, for all [ = 1,...,n. We denote lé Alb;,] by Alb], and it is also said to
=1

be the minimal free summand of A containing a free sum b. Then

@ (bF) Ly ((Ealbil) ) = (le_albi?l)
o (5) S
=1 =1

on the minimal free summand A[b] of A (not fully on A), for all k € N.

Here, remark that each summand ¢ (b%) of (7.10) satisfies (7.8).

Similar to the free-reduced-word case, if b is a free sum in the sense of (7.9), then
one can consider

n (k)
pk) — (Z biz) — Z (bill bizz ... bilk> )
=1

(I1,....l)E{L,...,n}*

(7.10)

where the summands of b*) are free words (which are non-reduced in general) in A.
Also, one can distinguish b* in A[b], and b*) in A as above.

7.2. THE FINITE-ADELIC C*-PROBABILITY SPACE (Mip, ¢)

Let M%j be (p, j)-Adelic C*-probability spaces (Mp,pp ;), for all p € P,j € Ny,
and let ‘
{M%J pEP, ENO}

be the system (7.1) of these C*-probability spaces.
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Construct now the free product C*-probability space (Mp, 1) of the system
{M%j }PJ )

def

(Mp, ) (7.11)

Dp,J
* = * Mp *  Op
pEP, jeN, T <pe7>,jeNo " peP.jeNy P )7

as in Section 7.1 (e.g., see [12] and [14]), where

*x Mp=Mp*x Mpx---x Mpx*...
peEP,JEL

|PxNg|-many times

Definition 7.4. The free product C*-probability space,

denote
Mp “E (Mp, ¥)
of (7.11) is called “the” finite-Adelic (free-product) C*-probability space.

Remark that, by Section 7.1, even though our finite-Adelic C*-algebra Mp is
commutative, the free product C*-algebra Mp is highly noncommutative, and hence,
(Mp, ¢) is a (noncommutative) C*-probability space (under the traditional sense of
free probability theory).

Now, we concentrate on simplest (4)-boundary operators o of Mp, in the sense
of (6.9) satisfying (7.2), and the corresponding free reduced, or non-reduced words
generated by them in the finite-Adelic C*-probability space Mp of (7.11), for all
q € P,k € Ny. Again, recall that, by (7.2) (or, by the refined results (7.3) and (7.4),
refining (7.2)), one has

ors (03) = = = =51 = 7 0l0)
and
B 1 1 11
#ri (o) = (qkl 1) (5 =) 1)
= WW(HJ),

for all p# q € P, and j,k € Ny, for all n € N, where ¢ is the Euler totient function.
Let oy, 5, be taken from free blocks MZ'7" of the finite-Adelic C*-probability space
Mp, forl=1,...,N, for N € N, i.e., choose a subset

{apig € ME -1=1,... N} in oy, (7.13)
and let
N
Tit = [ [ aprii € M (7.14)
=1

induced by the family (7.13), where
W = (pl, ...,pN) GPN,
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and
J=0r, ..., jn) €ZN.

Since ap, j, = Qy o are in free blocks Mp“” in Mp, for all I = 1,..., N,
the element 7}, of (7. 14) is understood as a free (reduced, or non-reduced) word,
TW = Qp,,jy Ops jo - - - Apy jiny 10 Mop.

Assume that either W or J is an alternating N-tuple. Then the free word T}, forms
a free “reduced” word in Mp (See Section 7.1). Thus, if either W or J is an alternating
N-tuple, then

. N n N . N
n equi n equl n

(TI;I]/) = <l@1am »jz) = l@l (O‘pz »jz) = H (apz ,jl) ) (7.15)

B B =1

in the minimal free summand 9Mp[T}l,] of Mp containing Ty, for all n € N.
Remark that )
(T)" =T Ty --- Titr (7.16)
—_—
n-times

is a free (non-reduced) word (in general) in Mp, for all n € N. Ounly if either
PN #p1in P, or jy # j1 in Z,

then (Tv‘{,) (m) form free reduced words in 9Mp, for all n € N. So, if there is no confusion,

one may regard (TV‘{,)(H) as free non-reduced words in Mp. But, as we discussed in
Section 7.1, if T} is a free reduced word with its length-1 in 9Mp, then

n 7\(n) T\ (%)
(Tw)" = (Tw) ", and (Tyg) = (Tiw)
in 93?73.
By (7.15) and (7.16), one obtains the following free-distributional data.

Theorem 7.5. Let Ty}, be a free random variable (7.14) generated by the family (7.13)
in the finite-Adelic C*-probability space Mp, where W and J are in the sense of (7.14).
If either W or J is an alternating N -tuple, then

SRTANEE S L S N NI O 717
1/)(( W)>_zlj1 IS _11;[1 F(Zs(pl) : (7.17)

on its minimal free summand Mp[Ti,;] of Mp, for all n € N. Moreover, if either
pN # p1in W, or jn # j1 in J, then

N 1\ Y1 "
v () )):l[ll(jl— p) =H(W¢<pz>) SN

P =1 \P1

on Mp, for all n € N.
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Proof. Suppose first that, for a fixed free random variable TMJ, in the sense of (7.14),
either W or J is an alternating N-tuple. Then, by (7.13), the operator T}, forms
a free reduced word in 9p. Therefore, this free reduced word satisfies the equivalence
(7.15), i.e

N
(Ti)" = H (ap,,j,)" for allm € N,
1=1
in the minimal free summand 9Mp [T{,]V] of Mp. Thus,

( ) H‘pm i (05, 5,)
il 1 e
H Ppi.di O‘;Dz,Jl H < - JL-H) = H (W(b(pl)) )

= = D 1=1 \Pi

on Mp[Tj,], for all n € N, by (7.12).
Assume now that either W or J is an alternating N-tuple, and assume further
that either
pN # p1in Por, jy # j1 in Z.

Then the operator T; {,IV forms a free reduced word in 9p, moreover, (Tv{,) (n) forms
a free “reduced” word in Mp, too, for all n € N, by (7.16). Therefore, one obtains that

o (1) ™) = (v (T&é))”z(ﬂwm,jl <am,ﬁ>> =TT o ()"
=1 =1

n n (7.19)
e
- = 7o) )
-1l (Pz pi’“) 11 (Pi’“
on Mp, for all n € N, by (7.12).
Therefore, the free-distributional data (7.17) and (7.18) hold true. O

Remark that, to satisfy the formula (7.19) in the above proof, the free-“reduced”-

-word-ness of Ty}, and (T {,]V)(n) is critical.
Now, let us determine the following family

{a%kl € M%’jl |pr # ¢ in P, and k;, j; € Ny in Z,
(7.20)
foralll=1, ..., N, forNeN}

of simplest (+)-boundary operators in the free blocks M%’j’ in the finite-Adelic
C*-probability space MMp, for  =1,..., N. Simiarly, let

U:(ql, ...,QN)GPN,
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and
L= (ky, ..., ky) € Z".
Here, remark that
p#qinP, foralll=1,..., N, (7.21)
n (7.20), and furthermore, k; and j; are not necessarily identical in Ny, for i =1,... N.

So, the families (7.13) and (7.20) are totally different kinds.
For a newly fixed family (7.20), define a free random variable

N
St =[] cqr € Mp, (7.22)
=1
where ag, 1, € M%”jl are from the family (7.20), forall [ =1,...  N.

Theorem 7.6. Let Sh be a free random wvariable (7.22) of the finite-Adelic
C*-probability space Mp induced by the family (7.20). Assume that either

W:(pl, ...,pN)GPN,

or
J=0j1, ..., jn) €ZN

is an alternating N -tuple. Then

N N
(0 <(55)n) - H (iz - k11+1> <a - le+1> = H (M) o (7.23)
=1

q q Dy P 4" P

for alln € N.
Moreover, if either py # p1 in P, and W is alternating, or if jn # j1 in Z, and J
is alternating, then

(6 = ([ (220 (o)) = (e et )
’ - =1 QIkl (Jzle p{l P?H o kl+1pgl+l
(7.24)

for all n € N.

Proof. First, assume that S is in the sense of (7.22) generated by a family (7.20)
in Mp, where either W or J is alternating. Then the operator Sé forms a free reduced
word in Mp, satisfying that

n N
n equi N n\ equi n
5" (Foan) = (5 0er) E o @29
=1

L ®=
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in its minimal free summand Mip [S } of Mp, for all n € N. Thus, one can get that
N N
(G ((Sl]j) ) =v <H a;ﬂw) = H@Phjl (agzvkz)
=1 =1

by (7.20), (7.22) and (7.25)

N
= H Ppui (g k)

1 1 1 1
ity el I B il ren s
N qll qll+1 p{L p?H_

N
H lel
kl-‘rl ]l+1 )

Il
—

=K

by (7.21) and (7.12)

by (7.12). Thus, we obtain the free-distributional data (7.23) of S§ in Mp [SE].
Now, agssume either W or J is an alternating N-tuple. Also, suppose either py # p1
in P, or JN # j1 in Z. Then the operator S¥ is a free reduced word in 90p, moreover,

(SL ) form free reduced words in 9Mp, for all n € N. Thus,
(n) n
v ((55)™) = (v (s8))
N n
= (H Ppi.i (aqz,kz)>
1=1

(Aot (7:26)
s\at gt )\l Pttt

(T =1 o(ap1)
- k1+1pjl+1 )
for all n € N. Therefore, we obtain the free-distributional data (7.24) by (7.26). O

Now, let us fix the family (7.13), and construct a free random variable Ty, ;
in mp by

Twy = oy (7.27)

Theorem 7.7. Let Tw,; be a free random variable (7.27) generated by the family
(7.13) in the finite-Adelic C*-probability space Mp. Suppose either

W=, ...,on), ord=(J1, ..., IN)
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is an N-tuple of mutually-distinct entries in P, respectively, in Z. Then

(T z(l ) z(";ﬁl, 2

on the minimal free summand Mp[Tyw, ;] of Mp containing Tw,;, for all n € N.

Proof. Suppose Tw,; be in the sense of (7.27) in Mp, and assume that either W or J
is an N-tuple consisting of mutually-distinct entries. Then the operator Ty, ; forms
a free sum in Mp, satisfying

n equi N " N n
(TW,J) = (ZE:B aplyjl,) = IEB Cpydi
(7.29)

in Mp, for all n € N.
Thus, one can have that

U (Tw.n)") =¥ (Tw,y) = <Zapm>
N
= Z apl .7l Z‘Pm i Oépl,gl

by (7.29)

for all n € N. Therefore, we obtain the free-moment formula (7.28)
for TWJ in m'p [TW,J]. ]

Now, let us fix a family (7.20), and construct a free random variable Sy, 1.,

N

Sv.L = Z og, 1 € Mp, (7.30)
=1
where ‘
Qg € MP7 inMp, foralll=1,..., N,
where

U=(q1,....,qnv) €PN, and L= (ky, ..., ky) € Z",
given in (7.20).



184 Ilwoo Cho

Theorem 7.8. Let Sy, be a free random variable (7.30) in the finite-Adelic
C*-probability space Mp. Assume that either

W=(p1, ..., pn) €PN, orJ=(j1, ..., jn) €ZN
is an N-tuple of mutually-distinct entries. Then

N o/ 1 1 1 N
ETHOEDY ( - +> ( +> = M (7.31)
=1

q q Py D = 4 P

on the minimal free summand Mp[Sy.1] of Mp containing Sy 1, for all n € N.

Proof. By the assumption that either W or J is an N-tuple consisting of mutually
distinct entries, the operator Sy 1, forms a free sum in 9Mp satisfying that

n
i N N
n equi n
(SU,L) = (EB O‘qukz) = @f‘qz,kz

N (7.32)

egli S
- : ql,kl z aql)kl UL,

=1

in its minimal free summand Mp [Sy 1] of Mp, for all n € N. And hence, one obtains
that

¥ ((Su.L)") =¥ (Su.L)

N N
= Zw (aqz,kz) = Z@pz’jl (aqz,kz)
=1 =1

by (7.20)

N N
Z _ 1 1) P(@p1)
k j 1+1 - k 1’
l 1+1 p{l p]l+ el l+1p.7l+

q l

by (7.12), for all n € N. Therefore, we obtain the free-distributional data (7.31) for
SU,L in Dﬁp [SU,L]- O

REFERENCES

[1] 1. Cho, Free distributional data of arithmetic functions and corresponding generating
functions, Compl. Anal. Oper. Theo. 8 (2014) 2, 537-570.

[2] 1. Cho, Dynamical systems on arithmetic functions determined by prims, Banach J.
Math. Anal. 9 (2015) 1, 173-215.

[3] I. Cho, On dynamical systems induced by p-adic number fields, Opuscula Math. 35
(2015) 4, 445-484.



Adelic analysis and functional analysis on the finite Adele ring 185

[4] 1. Cho, Representations and corresponding operators induced by Hecke algebras, Complex
Anal. Oper. Theory 10 (2016) 3, 437-477.
[5] 1. Cho, Free semicircular families in free product Banach x-algebras induced by p-adic
number fields, Complex Anal. Oper. Theory 11 (2017) 3, 507-565.
[6] 1. Cho, p-adic number fields acting on W*-probability spaces, Turkish J. Anal. Numb.
Theo. (2017), to appear.
[7] 1. Cho, T. Gillespie, Free probability on the Hecke algebra, Complex Anal. Oper. Theory
9 (2015) 7, 1491-1531.
[8] I. Cho, P.E.T. Jorgensen, Semicircular elements induced by p-adic number fields, Opus-
cula Math. 37 (2017) 5, 665-703.
[9] T. Gillespie, Superposition of zeroes of automorphic L-functions and functoriality, PhD
Thesis, Univ. of Iowa, (2010).
[10] T. Gillespie, Prime Number Theorems for Rankin-Selberg L-Functions over Number
Fields, Sci. China Math. 54 (2011) 1, 35-46.
[11] F. Radulescu, Random matrices, amalgamated free products and subfactors of the
C*-algebra of a free group of nonsingular indez, Invent. Math. 115 (1994), 347-389.
[12] R. Speicher, Combinatorial theory of the free product with amalgamation and
operator-valued free probability theory, Amer. Math. Soc. Mem. 627 (1998).
[13] V.S. Vladimirov, I.V. Volovich, E.I. Zelenov, p-Adic Analysis and Mathematical Physics,
Ser. Soviet & East European Math., vol. 1, World Scientific, 1994.
14] D. Voiculescu, K. Dykemma, A. Nica, Free Random Variablesy CRM Monograph Series
(14] ) y ) . : grap :
vol. 1, Amer. Math. Soc., Providence, 1992.
Ilwoo Cho

choilwoo@sau.edu

Saint Ambrose University

Department of Mathematics and Statistics
421 Ambrose Hall, 518 W. Locust St.
Davenport, Iowa, 52803, USA

Received: February 9, 2017.
Revised: September 12, 2017.
Accepted: September 26, 2017.



