PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cytotoxicity and genotoxicity of GO-Fe3O4 hybrid in cultured mammalian cells

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study was aimed at investigating the effect of the Fe3O4  hybrid deposited on graphene oxide (GO- Fe3O4) on the relative viability and DNA integrity. The properties of the GO-Fe3O4  hybrid were analyzed using a transmission electron microscopy (TEM), X-ray diffraction technique (XRD) and thermal gravimetric method (TGA), while the efficiency of graphene oxide covalent functionalization with iron oxide nanospheres was determined by Fourier transform infrared spectroscopy (FT-IR). L929 and MCF-7 cell lines were selected to analyze the biocompatibility of GO-Fe3O4  nanoparticles. The hybrid was tested using WST-1 and LDH leakage assays. DNA integrity was analyzed by agarose gel electrophoresis and micronucleus assay was performed to examine chromosomal damage in the exposed cell lines. The tested GO-Fe3O4  hybrid did not significantly reduce cell metabolism of L929 cells. GO-Fe3O4 hybrid particles only slightly affected the integrity of cell membranes. DNA integrity and micronucleus assays did not indicate genotoxicity of the hybrid.
Rocznik
Strony
27--33
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
  • West Pomeranian University of Technology, Szczecin, Laboratory of Cytogenetics, Doktora Judyma 6, 71-466 Szczecin, Poland
Bibliografia
  • 1. Urbas, K., Aleksandrzak, M., Jedrzejczak, M., Jedrzejczak, M., Rakoczy, R., Chen, X. & Mijowska, E. 2014. Chemical and magnetic functionalization of graphene oxide as a route to enhance its biocompatibility. Nanoscale Res. Lett. 9, 656. DOI: 10.1186/1556-276X-9-656.
  • 2. Lim, H.M., Huang, N.M., Lim, S.S., Harrison, I. & Chia, C.H. 2011. Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth. Int J Nanomed. 6, 1817–1823. DOI: 10.2147/IJN.S23392.
  • 3. Wang, K., Ruan, J., Song, H., Zhang, J., Wo, Y., Guo, S. & Cui, D. 2011. Biocompatibility of graphene oxide. Nanoscale Res. Lett. 6, 8–16. DOI: 10.1007/s11671-010-9751-6.
  • 4. Balandin, A.A. (2011). Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581. DOI: 10.1038/nmat3064.
  • 5. Chung, I.M., Rahuman, A.A., Marimuthu, S., Kirthi, A.V., Anbarasan, K. & Govindasamy, R. 2015. An investigation of the cytotoxicity and caspase-mediates apoptotic effect of green synthesized zinc oxide nanoparticels using Eclipta prostrata on human liver carcinoma cells. Nanomaterials 5, 1317–1330. DOI: 10.3390/nano5031317.
  • 6. Gurunathan, S., Raman, J., Malek, S.N.A., John, P.A. &Vikineswary, S. 2013. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int. J. Nanomed. 8, 4399–4413. DOI: 10.2147/IJN.S51881.
  • 7. Bai, L.Z., Zhao, D.L., Xu, Y., Zhang, J.M., Gao, Y.L., Zhao, L.Y., Tang, J.T. 2012. Inductive heating property of graphene oxide-Fe3O4 nanoparticels hybrid in an AC magnetic field for localized hyperthermia. Mater. Lett. 68, 399–401. DOI: 10.1016/j.matlet.2011.11.013.
  • 8. Yang, J.H., Ramaraj, B. & Yoon, K.R. 2014. Preparation and characterization of superparamagnetic graphene oxide nanohybrids anchored with Fe3O4 nanoparticles. J. All. Compd. 583, 128–133. DOI: 10.1016/j.jallcom.2013.08.152.
  • 9. Lammel, T., Boisseaux, P., Fernández-Cruz, M.L., Navas, J.M. 2013. Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2. Part Fibre Toxicol 10, 27. DOI: 10.1186/1743-8977-10-27.
  • 10. Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W. & Tour, J.M. 2010. Improved synthesis of graphene oxide. ACS Nano 4, 4806. DOI: 10.1021/nn1006368.
  • 11. Johnsen, A.R., Bendixen, K. & Karlson, U. 2002. Detection of microbial growth on polycyclic aromatic hydrocarbons in microtiter plates by using the respiration indicator WST-1. Appl. Environ. Microbiol. 68, 2683–2689. DOI: 10.1128/AEM.68.6.2683-2689.2002.
  • 12. Surrallés, J., Xamena, N., Creus, A., Catalán, J., Norppa, H., Marcos, R. 1995. Induction of micronuclei by five pyrethroid insecticides in whole-blood and isolated human lymphocyte cultures. Mutat Res. 341, 169–184. DOI: 10.1016/0165-1218(95)90007-1.
  • 13. Lindberg, H.K., Falck, G.C.M., Suhonen, S., Vippola, M., Vanhal, E., Catalán, J., Savolainen, K. & Norppa, H. 2009. Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofi bres in human bronchial epithelial cells in vitro. Toxicol Lett. 186, 166–173. DOI: 10.1016/j.toxlet.2008.11.019.
  • 14. Mornet, S., Vasseur, S., Grasset, F. & Duguet, E. 2014. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14, 2161–2175. DOI: 10.1039/B402025A.
  • 15. Urbas, K., Jedrzejczak-Silicka, M., Rakoczy, R., Zaborski, D. & Mijowska, E. 2016. Effect of GO-Fe3O4 and rotating magnetic field on cellular metabolic activity of mammalian cells. J. Biomater. Appl. 30, 1392–406. DOI: 10.1177/0885328216628762.
  • 16. Dobson, J. 2006. Magnetic nanoparticles for drug delivery. Drug. Dev. Res. 67, 55–60. DOI: 10.1016/S1748-0132(07)70084-1.
  • 17. Chen, W., Yi P., Zhang, Y., Zhang, L., Deng, Z., Zhang, Z. 2011. Composites of aminodextran-coated Fe3O4 nanopartilces and graphene oxide for cellular magnetic resonance imaging. ACS Appl. Mater. Interf. 3. 4085–4091. DOI: 10.1021/am2009647.
  • 18. AshaRani, P.V., Hande, M.P. & Valiyaveettil, S. 2009. Antiproliferative activity of silver nanoparticles. BMC Cell. Biol. 10, 65. DOI: 10.1186/1471-2121-10-65.
  • 19. Javed, M., Saquib, Q., Azam, A. & Naqvi, S.A.H. 2009. Zinc oxide nanoparticels-induced DNA damage in human lymphocytes. Int. J. Nanopart. 2, 402–415. DOI: 10.1504/IJNP.2009.028775.
  • 20. Kazmirova, A., Magdolenova, Z., Barancokova, M., Staruchova, M., Volkovova, K. & Dusinksa, M. 2012. Genotoxicity testing of PLGA-PEO nanoparticles in TK6 cells by the comet assay and the cytokinesis-block micronucleus assay. Mutat Res. 748, 42-47. DOI: 10.1016/j.mrgentox.2012.06.012.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e63d2ef7-2f39-4a3b-a0cd-16af814736a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.