PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical and microstructural characterization of hybrid fiber metal laminates obtained through sustainable manufacturing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fiber metal laminates (FMLs) provide lucrative solutions for lightweight commercial aircrafts. They are a class of hybrid composites made from interlaced layers of thin metals and fiber-reinforced adhesives. The present investigation deals with the effects of hybridization and stacking sequence of aluminum sheets (A), jute (J) and Kevlar (K) fibers on the flexural, impact, hardness and tensile properties. Three distinct configurations A/K/A/K/A/K/A (I), A/J/A/K/A/J/A (II) and A/K/J/A/J/K/A (III) of FMLs have been chosen and designed for evaluation of their mechanical attributes. Comparative analysis shows that configuration A/K/J/A/J/K/A (III) offers superior results for flexural, impact, shore D hardness and tensile properties due to hybridization and appropriate stacking sequence with their maximum values as 495 N, 10.4 J, 85.4 and 325.6 MPa, respectively. Outer Kevlar layers supported by the subsequent jute fiber layers enable the configuration A/ K/J/A/J/K/A (III) to resist better when subjected to high mechanical load. Moreover, the microstructural analysis revealed that the jute fibers make a stronger bond with aluminum and Kevlar fibers which prevents FMLs from delamination and early failure.
Rocznik
Strony
art. no. e35, 2022
Opis fizyczny
Bibliogr. 65 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India
  • Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India
  • Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Viale Japigia 182, 70126 Bari, Italy
  • Department of Mechanical Engineering, PSR Engineering College, Sivakasi, Tamil Nadu, India
  • Department of Industrial and Manufacturing Engineering, University of Engineering and Technology, Lahore 54890, Pakistan
  • Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong
  • Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow G1 1XJ, Scotland
Bibliografia
  • 1. Safaei B, Fattahi AM, Chu F. Finite element study on elastic transition in platelet reinforced composites. Microsyst Technol. 2018;24(6):2663–71.
  • 2. Alhijazi M, et al. Recent developments in luffa natural fiber composites: review. Sustainability. 2020;12(18):7683.
  • 3. Alhijazi M, et al. Recent developments in palm fibers composites: a review. J Polym Environ. 2020;28(12):3029–54.
  • 4. Selver E, Ucar N, Gulmez T. Effect of stacking sequence on tensile, flexural and thermomechanical properties of hybrid flax/glass and jute/glass thermoset composites. J Ind Text. 2017;48(2):494–520.
  • 5. de Andrade Silva F, et al. Physical and mechanical properties of durable sisal fiber–cement composites. Constr Build Mater. 2010;24(5):777–85.
  • 6. Singh H, et al. A brief review of jute fibre and its composites. Mater Today Proc. 2018;5(14):28427–37.
  • 7. Raghavendra G, et al. Jute fiber reinforced epoxy composites and comparison with the glass and neat epoxy composites. J Compos Mater. 2013;48(20):2537–47.
  • 8. Gujjala R, et al. Mechanical properties of woven jute–glass hybrid-reinforced epoxy composite. J Compos Mater. 2014;48(28):3445–55.
  • 9. Maharana SM, Pradhan AK, Pandit MK. Moisture absorption behaviour of nanofiller reinforced jute-kevlar hybrid polymer composite. Mater Today. 2020;26:775.
  • 10. Safaei BJS, Structures C. The effect of embedding a porous core on the free vibration behavior of laminated composite plates. Steel Compos Struct. 2020;35(5):659–70.
  • 11. Alderliesten R. Fatigue and fracture of fibre metal laminates, vol. 236. Berlin: Springer; 2017.
  • 12. Sadighi M, Alderliesten RC, Benedictus R. Impact resistance of fiber-metal laminates: a review. Int J Impact Eng. 2012;49:77–90.
  • 13. Sinmazçelik T, et al. A review: fibre metal laminates, back-ground, bonding types and applied test methods. Mater Design. 2011;32(7):3671–85.
  • 14. Vermeeren CAJR. An historic overview of the development of fibre metal laminates. Appl Compos Mater. 2003;10(4):189–205.
  • 15. Asaee Z, Taheri F. Experimental and numerical investigation into the influence of stacking sequence on the low-velocity impact response of new 3D FMLs. Compos Struct. 2016;140:136–46.
  • 16. Vlot A. Glare: history of the development of a new aircraft material. Berlin: Springer; 2007.
  • 17. Mania RJ, York CB. Buckling strength improvements for fibre metal laminates using thin-ply tailoring. Compos Struct. 2017;159:424–32.
  • 18. Chen Y, Wang Y, Wang H. Research progress on interlaminar failure behavior of fiber metal laminates. Adv Polym Tech. 2020;202:1–20.
  • 19. Bieniaś J, Jakubczak P, Surowska B. Properties and characterization of fiber metal laminates. In: Thakur VK, Thakur MK, Pappu A, editors. Hybrid polymer composite materials. Sawston: Wood-head Publishing; 2017. p. 253–77.
  • 20. Jakubczak P, Bienias J, Surowska B. The influence of fibre orientation in aluminium–carbon laminates on low-velocity impact resistance. J Compos Mater. 2018;52(8):1005–16.
  • 21. Aghamohammadi H, et al. Effects of various aluminum surface treatments on the basalt fiber metal laminates interlaminar adhesion. Int J Adhes Adhes. 2018;84:184–93.
  • 22. Li H, et al. Effect of adhesive quantity on failure behavior and mechanical properties of fiber metal laminates based on the aluminum–lithium alloy. Compos Struct. 2016;152:687–92.
  • 23. Sharma AP, Khan SH, Parameswaran V. Experimental and numerical investigation on the uni-axial tensile response and failure of fiber metal laminates. Compos B Eng. 2017;125:259–74.
  • 24. Dhaliwal GS, Newaz GM. Experimental and numerical investigation of flexural behavior of carbon fiber reinforced aluminium laminates. J Reinf Plast Compos. 2016;35(12):945–56.
  • 25. Asaee Z, Taheri F. Experimental and numerical investigation into the influence of stacking sequence on the low-velocity impact response of new 3D FMLs. Compos Struct. 2016;140:136–46.
  • 26. Sukmawan R, Takagi H, Nakagaito AN. Strength evaluation of cross-ply green composite laminates reinforced by bamboo fiber. Compos B Eng. 2016;84:9–16.
  • 27. Azghan MA, Bahari-Sambran F, Eslami-Farsani R. Modeling and experimental study on the mechanical behavior of glass/basalt fiber metal laminates after thermal cycling. Int J Damage Mech. 2021;30(8):1192–212.
  • 28. Abd El-Baky MA, et al. Fabrication of cost effective fiber metal laminates based on jute and glass fabrics for enhanced mechanical properties. J Nat Fibers. 2020. https://doi.org/10.1080/15440478.2020.1739594.
  • 29. Loganathan T, et al. Mechanical and vibrational property evaluation of banana fiber epoxy sandwich composite with steel wire mesh core. J Nat Fibers. 2020. https://doi.org/10.1080/15440478.2020.1848744.
  • 30. Vieira LMG, et al. Novel fibre metal laminate sandwich composite structure with sisal woven core. Ind Crops Prod. 2017;99:189–95.
  • 31. Sarasini F, et al. Damage tolerance of carbon/flax hybrid composites subjected to low velocity impact. Compos Part Eng. 2016;91:144–53.
  • 32. Kali N, Pathak S, Korla S. Effect on vibration characteristics of fiber metal laminates sandwiched with natural fibers. Mater Today Proc. 2020;28:1092–6.
  • 33. Dhar Malingam S, et al. Tensile and impact properties of cost-effective hybrid fiber metal laminate sandwich structures. Adv Polym Tech. 2018;37(7):2385–93.
  • 34. Zareei N, Geranmayeh A, Eslami-Farsani RJPT. Interlaminar shear strength and tensile properties of environmentally-friendly fiber metal laminates reinforced by hybrid basalt and jute fibers. Polym Test. 2019;75:205–12.
  • 35. Subramaniam K, et al. The effects of stacking configuration on the response of tensile and quasi-static penetration to woven kenaf/glass hybrid composite metal laminate. Polym Compos. 2019;40(2):568–77.
  • 36. Medjahed A, et al. Mechanical and gamma rays shielding properties of a novel fiber-metal laminate based on a basalt/phthalonitrile composite and an Al-Li alloy. Compos Struct. 2019;210:421–9.
  • 37. Sarasini F, et al. Effect of temperature and fiber type on impact behavior of thermoplastic fiber metal laminates. Compos Struct. 2019;223:110961.
  • 38. Raza MH, et al. Investigating the effects of different electrodes on Al6061-SiC-7.5 wt% during electric discharge machining. Int J Adv Manuf Tech. 2018;99(9):3017–34.
  • 39. Brígida AIS, et al. Effect of chemical treatments on properties of green coconut fiber. Carbohyd Polym. 2010;79(4):832–8.
  • 40. Sadeghpour E, Sadighi M, Dariushi S. An investigation on blunt notch behavior of fiber metal laminates containing notch with different shapes. J Reinf Plast Compos. 2013;32(15):1143–52.
  • 41. Xu Y, et al. Improvement of adhesion performance between aluminum alloy sheet and epoxy based on anodizing technique. Int J Adhes Adhes. 2016;70:74–80.
  • 42. Xue Z, et al. Vibration characteristics analysis of moderately thick laminated composite plates with arbitrary boundary conditions. Materials. 2019;12(17):2829.
  • 43. Hamill L, Hofmann DC, Nutt S. Galvanic corrosion and mechanical behavior of fiber metal laminates of metallic glass and carbon fiber composites. Adv Eng Mater. 2018;20(2):1700711.
  • 44. Boopalan M, Niranjanaa M, Umapathy M. Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Compos Part B Eng. 2013;51:54–7.
  • 45. Mathivanan NR, Aiyappa A, Kumar MH. Experimental investigation on the effect of varying percentage of E-waste particulate filler in GFRP composite laminates. Mater Today Proc. 2020. https://doi.org/10.1016/j.matpr.2020.01.094.
  • 46. Yoshihara HJC, Materials B. Interlaminar shear strength of medium-density fiberboard obtained from asymmetrical four-point bending tests. Construct Build Mater. 2012;34:11–5.
  • 47. Zareei N, et al. The effect of different configurations on the bending and impact properties of the laminated composites of aluminum-hybrid basalt and jute fibers-epoxy. Fiber Polym. 2019;20(5):1054–60.
  • 48. Arpatappeh FA, Azghan MA, Eslami-Farsani R. The effect of stacking sequence of basalt and Kevlar fibers on the Charpy impact behavior of hybrid composites and fiber metal laminates. J Mech Eng Sci. 2020. https://doi.org/10.1177/0954406220914325.
  • 49. Ary Subagia IDG, et al. Effect of stacking sequence on the flexural properties of hybrid composites reinforced with carbon and basalt fibers. Compos Part B Eng. 2014;58:251–8.
  • 50. Arpatappeh FA, Azghan MA, Eslami-Farsani R. The effect of stacking sequence of basalt and Kevlar fibers on the Charpy impact behavior of hybrid composites and fiber metal laminates. Proc Inst Mech Eng C J Mech Eng Sci. 2020;234(16):3270–9.
  • 51. Nassar A, Nassar EJH. Effect of fiber orientation on the mechanical properties of multi layers laminate nanocomposites. Heliyon. 2020;6(1):e03167.
  • 52. Raza MH, et al. Grain selection and crystal orientation in single-crystal casting: state of the art. Cryst Res Technol. 2019;54(2):1800177.
  • 53. Fattahi A, Safaei B, Ahmed N. A comparison for the non-classical plate model based on axial buckling of single-layered graphene sheets. Eur Phys J Plus. 2019;134(11):555.
  • 54. Maryan MS, Ebrahimnezhad-Khaljiri H, Eslami-Farsani R. The experimental assessment of the various surface modifications on the tensile and fatigue behaviors of laminated aluminum/aramid fibers-epoxy composites. Int J Fatigue. 2022;154:106560.
  • 55. Bieniaś J, et al. Low-energy impact behaviour and damage characterization of carbon fibre reinforced polymer and aluminium hybrid laminates. Arch Civil Mech Eng. 2015;15(4):925–32.
  • 56. Le Bourlegat LR, et al. Processing and mechanical characterization of titanium-graphite hybrid laminates. J Reinf Plast Compos. 2010;29(22):3392–400.
  • 57. Reyes VG, Cantwell WJ. The mechanical properties of fibre-metal laminates based on glass fibre reinforced polypropylene. Compos Sci Technol. 2000;60(7):1085–94.
  • 58. Mathivanan NR, Aiyappa AC, Kumar MH. Experimental investigation on the effect of varying percentage of E-waste particulate filler in GFRP composite laminates. Mater Today Proc. 2020;28:1130–4.
  • 59. Santulli C, et al. Mechanical behaviour of jute cloth/wool felts hybrid laminates. Mater Des. 2013;50:309–21.
  • 60. Sivakumar D, et al. Influence of kenaf fabric on the tensile performance of environmentally sustainable fibre metal laminates. Alexandria Eng J. 2018;57(4):4003–8.
  • 61. Raabe D, Tasan CC, Olivetti EA. Strategies for improving the sustainability of structural metals. Nature. 2019;575(7781):64–74.
  • 62. Chen Y, Wang Y, Wang H. Research progress on interlaminar failure behavior of fiber metal laminates. Adv Polym Technol. 2020;2020:3097839.
  • 63. Behdinan K, et al. Graphene and CNT impact on heat transfer response of nanocomposite cylinders. Nanotechnol Rev. 2020;9(1):41–52.
  • 64. Guo X, et al. Study on out-of-plane flexural behavior of aluminium alloy gusset joints at elevated temperatures. Thin-Walled Struct. 2018;123:452–66.
  • 65. Xie G, et al. Optimization design and analysis of multilayer light-weight thermal protection structures under aerodynamic heating conditions. J Ther Sci Eng Appl. 2013. https://doi.org/10.1115/1.4007919.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6345580-d994-40b4-ae15-5f945e3f0b89
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.