PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Water Desalination and Bioelectricity Generation Using Three Chambers Microbial Salinity Cell Reactor with Electrolyte Recirculation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Microbial Salinity Cell (MSC) can simultaneously desalinate water and generate electricity from the biodegradation of organic compound in wastewater. Utilization of a three-chambers configuration system along with electrolyte recirculation, creates a desalination process which occurs when the salt ions from the anode and cathode chambers are accumulated into the middle chamber, driven by the electrical energy generated from the organic compound biodegradation. The performance of three-chambers electrolyte recirculation MSC was investigated using three different NaCl concentrations of 2.0 g/L, 4.0 g/L, and 8.0 g/L, with the acetate concentration of 0.82 g/L. At 2.0 g/L NaCl, the maximum power density production was 42.76 mW/m2, increasing conductivity in the middle chamber from 15.09 µS/cm to 0.74 mS/cm. At 4.0 g/L, the maximum power density reached was 53.37 mW/m2, and conductivity in the middle chamber was raised from 60.08 µS/cm to 2.74 mS/cm. At 8.0 g/L, the power density was 29.29 mW/m2 and conductivity in the middle chamber increased from 10.0 µS/cm to1.65 mS/cm. The performance of MSC was correlated with the initial NaCl concentration, with optimum NaCl concentration which was at 4.0 g/L, able to generate the highest power of 53.37 mW/m2 and showed the highest increasing conductivity from 80.8 to 2.74 mS/cm.
Rocznik
Strony
129--136
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Center of Industrial Pollution Prevention Technology, Ministry of Industry of the Republic of Indonesia, Jalan Ki Mangunsarkoro No. 6, Semarang 50136, Central Java, Indonesia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
autor
  • Center of Industrial Pollution Prevention Technology, Ministry of Industry of the Republic of Indonesia, Jalan Ki Mangunsarkoro No. 6, Semarang 50136, Central Java, Indonesia
  • Center of Industrial Pollution Prevention Technology, Ministry of Industry of the Republic of Indonesia, Jalan Ki Mangunsarkoro No. 6, Semarang 50136, Central Java, Indonesia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
Bibliografia
  • 1. Cao, X., Huang, X., Liang, P., Xiao, K., Zhou, Y., Zhang, X., Logan, B.E., 2009. A new method for water desalination using microbial desalination cells. Environ. Sci. Technol. 43, 7148–7152. https://doi.org/10.1021/es901950j
  • 2. Fornero, J.J., Rosenbaum, M., Cotta, M.A., Angenent, L.T., 2010. Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte ph and improves anolyte ph, alkalinity, and conductivity. Environ. Sci. Technol. 44, 2728–2734. https://doi.org/10.1021/es9031985
  • 3. Gebauer, R., 2004. Mesophilic anaerobic treatment of sludge from saline fish farm effluents with biogas production. Bioresour. Technol. 93, 155–167. https://doi.org/10.1016/j.biortech.2003.10.024
  • 4. Geobacter Sulfurreducens Medium [WWW Document], 2016.
  • 5. Grattieri, M., Minteer, S.D., 2018. Microbial fuel cells in saline and hypersaline environments: Advancements, challenges and future perspectives. Bioelectrochemistry 120, 127–137. https://doi.org/10.1016/j.bioelechem.2017.12.004
  • 6. He, Z., Huang, Y., Manohar, A.K., Mansfeld, F., 2008. Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry 74, 78–82. https://doi.org/10.1016/j.bioelechem.2008.07.007
  • 7. Jannelli, N., Anna Nastro, R., Cigolotti, V., Minutillo, M., Falcucci, G., 2017. Low pH, high salinity: Too much for microbial fuel cells? Appl. Energy 192, 543–550. https://doi.org/10.1016/j.apenergy.2016.07.079
  • 8. Kadir, A.A., Abdullah, S.R.S., Othman, B.A., Hasan, H.A., Othman, A.R., Imron, M.F., Ismail, N. ‘Izzati, Kurniawan, S.B., 2020. Dual function of Lemna minor and Azolla pinnata as phytoremediator for Palm Oil Mill Effluent and as feedstock. Chemosphere 259. https://doi.org/10.1016/j.chemosphere.2020.127468
  • 9. Kim, Y., Logan, B.E., 2013. Simultaneous removal of organic matter and salt ions from saline wastewater in bioelectrochemical systems. Desalination 308, 115–121. https://doi.org/10.1016/j.desal.2012.07.031
  • 10. Lefebvre, O., Tan, Z., Kharkwal, S., Ng, H.Y., 2012. Effect of increasing anodic NaCl concentration on microbial fuel cell performance. Bioresour. Technol. 112, 336–340. https://doi.org/10.1016/j.biortech.2012.02.048
  • 11. Liu, H., Cheng, S., Logan, B.E., 2005. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol. 39, 5488–5493. https://doi.org/10.1021/es050316c
  • 12. Logan, B.E., 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7, 375–81. https://doi.org/10.1038/nrmicro2113
  • 13. Luo, H., Xu, P., Roane, T.M., Jenkins, P.E., Ren, Z., 2012. Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination. Bioresour. Technol. 105, 60–66. https://doi.org/10.1016/j.biortech.2011.11.098
  • 14. Ma, C., Jin, R.C., Yang, G.F., Yu, J.J., Xing, B.S., Zhang, Q.Q., 2012. Impacts of transient salinity shock loads on Anammox process performance. Bioresour. Technol. 112, 124–130. https://doi.org/10.1016/j.biortech.2012.02.122
  • 15. Mehanna, M., Saito, T., Yan, J., Hickner, M., Cao, X., Huang, X., Logan, B.E., 2010. Using microbial desalination cells to reduce water salinity prior to reverse osmosis. Energy Environ. Sci. 3, 1114–1120. https://doi.org/10.1039/c002307h
  • 16. Mohan, S.V., Chandrasekhar, K., 2011. Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: Influence of electrode assembly and buffering capacity. Bioresour. Technol. 102, 7077–7085. https://doi.org/10.1016/j.biortech.2011.04.039
  • 17. Monzon, O., Yang, Y., Yu, C., Li, Q., Alvarez, P.J.J., 2015. Microbial fuel cells under extreme salinity: Performance and microbial analysis. Environ. Chem. 12, 293–299. https://doi.org/10.1071/EN13243
  • 18. Qu, Y., Feng, Y., Wang, X., Liu, J., Lv, J., He, W., Logan, B.E., 2012. Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control. Bioresour. Technol. 106, 89–94. https://doi.org/10.1016/j.biortech.2011.11.045
  • 19. Ren, Z., Ward, T.E., Regan, J.M., 2007. Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ. Sci. Technol. 41, 4781–4786. https://doi.org/10.1021/es070577h
  • 20. Rousseau, R., Santaella, C., Achouak, W., Godon, J.J., Bonnafous, A., Bergel, A., Délia, M.L., 2014. Correlation of the Electrochemical Kinetics of HighSalinity-Tolerant Bioanodes with the Structure and Microbial Composition of the Biofilm. ChemElectroChem 1, 1966–1975. https://doi.org/10.1002/celc.201402153
  • 21. Sulfurovum lithotrophicum methanogenium medium (h 2 /co 2 ) DSMZ 141 [WWW Document], 2014.
  • 22. Tangahu, B.V., Ningsih, D.A., Kurniawan, S.B., Imron, M.F., 2019. Study of BOD and COD Removal in Batik Wastewater using Scirpus grossus and Iris pseudacorus with Intermittent Exposure System. J. Ecol. Eng. 20, 130–134. https://doi.org/10.12911/22998993/105357
  • 23. Tremouli, A., Martinos, M., Lyberatos, G., 2017. The Effects of Salinity, pH and Temperature on the Performance of a Microbial Fuel Cell. Waste and Biomass Valorization 8, 2037–2043. https://doi.org/10.1007/s12649–016–9712–0
  • 24. Verstraete, W., Rabaey, K., 2006. Critical Review Microbial Fuel Cells : Methodology and Technology † 40, 5181–5192.
  • 25. Wang, C., Shen, J., Chen, Q., Ma, D., Zhang, G., Cui, C., Xin, Y., Zhao, Y., Hu, C., 2020. The inhibiting effect of oxygen diffusion on the electricity generation of three-chamber microbial fuel cells. J. Power Sources 453, 227889. https://doi.org/10.1016/j.jpowsour.2020.227889
  • 26. Wang, H., Ren, Z.J., 2013. A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol. Adv. 31, 1796–807. https://doi.org/10.1016/j.biotechadv.2013.10.001
  • 27. Yuliasni, R., Setianingsih, N.I., Wicaksono, K.A., Harihastuti, N., 2018. Influence of Operational Condition on the Performance of Halotolerant Enriched – Activated Sludge System for Treating Medium Salinity Peanut Roasted Wastewater. J. Ris. Teknol. Pencegah. Pencemaran Ind. 9, 46. https://doi.org/10.21771/jrtppi.2018.v9.no2.p46–54
  • 28. Zhang, B., He, Z., 2012. Integrated salinity reduction and water recovery in an osmotic microbial desalination cell. RSC Adv. 2, 3265–3269. https://doi.org/10.1039/c2ra20193c
  • 29. Zhang, L., Fu, G., Zhang, Z., 2019. Electricity generation and microbial community in longrunning microbial fuel cell for high-salinity mustard tuber wastewater treatment. Bioelectrochemistry 126, 20–28. https://doi.org/10.1016/j.bioelechem.2018.11.002
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e62dcc4a-811f-4bae-ba57-9259a3ce3e89
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.