PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation study on the structural optimization of composite insulators based on contaminant deposition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Optimizing the aerodynamic structure of composite insulators can guarantee the safe operation of power systems. In this study, we construct a simulation model for composite insulator contaminant deposition using the COMSOL simulation software, and the rationality of the simulation model and method is verified through wind tunnel experiments. Taking the FXBW4-110/100 composite insulator as an example, we adopt a progressive optimization plan to explore the impacts of shed spacing s, and shed inclination angles α and β on its contaminant deposition characteristics under DC and AC voltages. Based on the numerical simulation results, we analyze the antifouling performance of insulators before and after structural optimization. The results indicate the following: 1) The contaminant deposition of the insulator under AC and DC voltages is negatively correlated with the shed spacing s, but positively correlated with the lower inclination angle β. 2) Under AC voltages, the contaminant deposition of the insulator increases with the upper inclination angle α, while under DC voltages, the contaminant deposition shows an uptrend first, then a downtrend and then an uptrend again with the increase of the upper inclination angle α. 3) Compared with the original model, the AC-optimized model ( α = 6°, β = 2° and s = 98 mm) with a larger shed spacing s, and smaller shed inclination angles α and β showed superior antifouling performance at wind speeds of no less than 2 m/s, and under the typical conditions ( v = 2.5 m/s, d = 20 μm, and ρ = 2 200 kg/m 3), its contaminant deposition is 15% less than that of the original model ( α = 10°, β = 2° and s = 80 mm).
Rocznik
Strony
1089--1105
Opis fizyczny
Bibliogr. 24 poz., fig., tab.
Twórcy
autor
  • Department of Power Engineering, School of Energy, Power and Mechanics North China Electric Power University, China
autor
  • Department of Power Engineering, School of Energy, Power and Mechanics North China Electric Power University, China
autor
  • Department of Power Engineering, School of Energy, Power and Mechanics North China Electric Power University, China
autor
  • Department of Power Engineering, School of Energy, Power and Mechanics North China Electric Power University, China
autor
  • Department of Power Engineering, School of Energy, Power and Mechanics North China Electric Power University, China
Bibliografia
  • [1] Lan L., Mu L., Wang Y., Yuan X.Q., Wang W., Li Z. H., The influence of pollution accumulation on coating aging of UHV line insulators with different suspension height in coal ash polluted area, Archives of Electrical Engineering, vol. 69, no. 1, pp. 39–56 (2020), DOI: 10.24425/aee.2020.131757.
  • [2] Bychkov P.N., Zabrodina I.K., Shlapak V.S., Insulation contamination of overhead transmission lines by extreme service conditions, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 23, no. 1, pp. 288–293 (2016), DOI: 10.1109/TDEI.2015.005323.
  • [3] Yang L.G., Pauli F., Zhang S.M., Hambrecht F., Hameyer K., Influence of conductive particle contamination on the insulation system of rotating electrical machines with direct oil cooling, Archives of Electrical Engineering, vol. 71, no. 3, pp. 789–804 (2022), DOI: 10.24425/aee.2022.141 685.
  • [4] El-hag A.H., Jayaram S.H., Cherney E.A., Effect of insulator profile on aging performance of silicone rubber insulators in salt-fog, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 14, no. 2, pp. 352–359 (2007), DOI: 10.1109/TDEI.2007.344615.
  • [5] Gafti A., Taherian R., Kiahoseini S.R., Chemical composition optimization of nanocomposites used for shed and core of outdoor composite insulators, Frontiers in Materials, vol. 9 (2022), DOI: 10.3389/ fmats.2022.1024730.
  • [6] Li L.C., Gu Y., Hao Y.P., Xue Y.W., Xiong G.K., Yang L., Zhang F.Z., Shed Parameters Optimization of Composite Post Insulators for UHV DC Flashover Voltages at High Altitudes, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 22, no. 1, pp. 169–176 (2015), DOI: 10.1109/TDEI.2014.004528.
  • [7] You J.W., Study on Contamination Characteristics of Typical Insulators Tested in Wind Tunnel, Master Thesis, Chongqing University, Chongqing (2016).
  • [8] Liu Q., Xie L., Nan J., External Insulation Characteristics and Anti-ice Umbrella Application of HV Composite Post Insulator, High Voltage Engineering, vol. 46, no. 8, pp. 2872–2879 (2020).
  • [9] Madi A.M., He Y.D., Jiang L.L., Design and testing of an improved profile for silicone rubber composite insulators, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 24, no. 5, pp. 2930–2936 (2017), DOI: 10.1109/TDEI.2017.006170.
  • [10] Mariprasath T., Asokan S., Ravindaran M., Comparison and Optimization of Various Coated Ceramic Insulator Artificial Coastal Thermal Power Plant Pollution, Journal of Circuits Systems and Computers, vol. 29, no. 12 (2020), DOI: 10.1142/S0218126620501996.
  • [11] El-Refaie E.M., Abd Elrahman M.K., Mohamed M.K., Electric field distribution of optimized composite insulator profiles under different pollution conditions, Ain Shams Engineering Journal, vol. 9, no. 4, pp. 1349–1356 (2018), DOI: 10.1016/j.asej.2016.08.012.
  • [12] Lv Y.K., Zhao W.P., Yan W.P., Liu Y.P., Optimization of the contamination particle deposition model based on humidity and surface energy, Applied Thermal Engineering, vol. 157, no. 11, article 113734 (2019), DOI: 10.1016/j.applthermaleng.2019.113734.
  • [13] Lv Y.K., Chen Z.Z., Ge Q.Z., Wang Q., Zhang Y.Z., Numerical Simulation of Contamination Accumulation Characteristics of Composite Insulators in Salt Fog Environment, Energy Engineering: Journal of the Association of Energy Engineering, vol. 120, no. 2, pp. 483–499 (2023), DOI: 10.32604/ee.2023.023649.
  • [14] Wang G.Z., Chen Q., Simulation on Contamination Depositing Characteristics of Electrified Railway Catenary Insulators, Insulators, and Surge Arresters, vol. 298, no. 6, pp. 228–234¸240 (2020).
  • [15] Li M.Z., Mei H.W., Cheng D.F., Xia L.Z., Cao B., Wang L.M., Influence of Electric Field on Contamination Accumulation Characteristics of Glass Material, High Voltage Engineering, vol. 47, no. 10, pp. 3581–3589 (2021).
  • [16] Huang Z.C., Liu Y.P., Geng J.H., Li H., Kong Y.X., Liu J.X., Model and Experimental Verification of Particle Collision Capture on Composite Insulator Surface, High Voltage Engineering, vol. 48, no. 3, pp. 902–913 (2022).
  • [17] Lv F.C., Huang H., Liu Y.P., Qin C.X., Liu Q., Xu T., Contamination Depositing Characteristics of Insulators Under Natural Crosswind Conditions with Wind Tunnel Simulation, High Voltage Engi- neering, vol. 40, no. 5, pp. 1281–1289 (2014).
  • [18] White H.J., Industrial electrostatic precipitator, Reading UK: Addison-Wesley (1963).
  • [19] IEC TS 60815, Selection and dimensioning of high-voltage insulators intended for use in polluted conditions – Part 3: Polymer insulators for a.c. systems (2008).
  • [20] IEC TS 60815, Selection and dimensioning of high-voltage insulators intended for use in polluted conditions – Part 4: Insulators for d.c. systems (2016).
  • [21] GB/T 26218, Selection and dimensioning of high-voltage insulators intended for use in polluted conditions – Part 3: Composite insulators for a.c. systems (2011).
  • [22] GB/T 26218, Selection and dimensioning of high-voltage insulators intended for use in polluted conditions – Part 4: Insulators for d.c. systems (2019).
  • [23] Wang N., Long-term Trend of Surface Wind Speed and Wind Energy over China in Recent 36 Years, Journal of Natural Resources, Master Thesis, Nanjing University of Information Science and Technology, Nanjing (2019).
  • [24] Jiang M., Jiang Y.P., Lu M., Li L., Study on Particle Size Distribution and Mechanism of Natural Contaminated Particles on the Surface of Composite Insulator, High Voltage Apparatus, vol. 57, no. 12, pp. 17–24 (2021).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e62d050c-5972-42c2-a81d-9a9bcca0ddfc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.