PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental Research Concerning Hydrodynamic Clutches Controlled by Increasing Distance Between Rotors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article describes the results of experimental research concerning a prototypical hydrodynamic clutch controlled via changes in flow rates of the working fluid. The aim of the research was to collect experimental data to confirm the practical possibility of using such a control method of the hydrodynamic clutch and to compare this with other currently used methods. A change in flow rate of the working fluid was obtained by increasing the distance between rotors. The experimental research was conducted on a test rig built specifically for this purpose. On the basis of the research, the influence of the clutch filling level, the direction of rotation and the temperature of the working fluid on the clutch torque were determined. The experimental research shows that the transferred torque is significantly influenced by the width of the gap between rotors, the rotational speed of the input shaft, the clutch filling degree and the temperature of the working fluid. Thus, these values may be used to control the torque transferred by the hydrodynamic clutch. The temperature of the working fluid is not recommended as a control value due to the fact that it is dependent on the working conditions of the hydrodynamic clutch. On the basis of the test results, it was proven that hydrodynamic clutches controlled by increasing the distance between rotors can be successfully used, for example, in drive systems of wind farms.
Twórcy
  • University’s Branch in Sandomierz, Jan Kochanowski University of Kielce, ul. Żeromskiego 5, 25-369 Kielce, Poland
  • University’s Branch in Sandomierz, Jan Kochanowski University of Kielce, ul. Żeromskiego 5, 25-369 Kielce, Poland
  • Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, ul. Malczewskiego 29, 26-600 Radom, Poland
autor
  • Łukasiewicz Research Network – New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
  • Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, ul. Malczewskiego 29, 26-600 Radom, Poland
  • Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, ul. Malczewskiego 29, 26-600 Radom, Poland
Bibliografia
  • 1. Kęsy Z. and Kęsy A. Application of numerical methods to the modelling of transmission systems with hydrodynamic torque converter. International Journal of Computer Applications in Technology, 31(3/4), 2008, 275 –283. DOI:10.1504/IJCAT.2008.018163
  • 2. Kęsy Z. and Kęsy A. Computer–aided method to calculate coefficients in dynamic equations for multi–element torque converter. International Journal of Vehicle Design, 13(2), 1992, 134 – 143. DOI:10.1504/IJVD.1992.061718
  • 3. Kęsy Z. and Kęsy A. Application of sensitivity methods to the improvement of a hydrodynamic torque converter manufacturing process. International Journal of Computer Applications in Technology, 6(1), 1993, 35 – 38. DOI:10.1504/IJCAT.1993.062612
  • 4. Kęsy A. and Kęsy Z. Damping Characteristics of a transmission system with a hydrodynamic torque converter. Journal of Sound and Vibration, 166(3), 1993, 493 – 506. DOI:10.1006/jsvi.1993.1308
  • 5. Szczepaniak C., Kęsy Z. and Kęsy A. Damping performance of power transmission system with hydraulic torque converter. Vehicle System Dynamics, 20(5), 1991, 283 – 295. DOI:10.1080/00423119108968990
  • 6. Jung J. H., Kang S. and Hur N. A Numerical study of a torque converter with various methods for the accuracy improvement of performance prediction. Progress in Computational Fluid Dynamics An International Journal, 11(3/4), 2011, 261 – 268. DOI:10.1504/PCFD.2011.041027
  • 7. Park In J. and Cho K. R. Numerical flow analysis of torque converter using interrow mixing model. JSME International Journal Series B Fluids and Thermal Engineering, 41(4), 1998, 847 – 854. DOI:10.1299/JSMEB.41.847
  • 8. Schulz H., Greim R. and Volgmann W. Calculation of three dimensional viscous flow in hydrodynamic torqueconverter.ASME Journal of Turbomachinery, 118(3), 1996, 578 – 589. DOI:10.1115/1.2836705
  • 9. Luo Y., Zuo Z. G., Liu S. H., Fan H. G. and Zhuge W. L. Numerical simulation of the two-phase flows in a hydraulic coupling by solving VOF model. IOP Conference Series: Materials Science and Engineering, 52, 2013, 1 – 7. DOI:10.1088/1757899X/52/7/072022
  • 10. Schweitzer J. and Gandham J. Computational fluid dynamics in torque converter: validation and application. International Journal of Rotating Machinery, 9, 2003, 411 – 418. DOI:10.1155/ S1023621X03000393
  • 11. Chen J. and Wu G. Numerical investigation of jet-wake and secondary flows in a hydrodynamic torque converter. SAE Technical Paper, 2017-011335, 2017, 1 – 11. DOI:10.4271/2017-01-1335.
  • 12. Jeyakumar S., Sasikumar M. Computational fluid dynamics simulation of hydraulic torque converter for performance characteristics prediction. International Journal of Scientific Research in Science, Engineering and Technology, 3(6), 2017, 402 – 408. DOI:10.32628/IJSRSET173697
  • 13. Khafagy A., Saleh I., Elsherief I. Effect of stator shape on the performance of torque converter. 16th International Conference on Aerospace Sciences and Aviation Technology, Cairo, Egypt 2015, 1 – 14. DOI:10.21608/ASAT.2015.22881
  • 14. Liu C., Li J., Bu W., Ma W., Shen G. and Yuan Z. Large eddy simulation for improvement of performance estimation and turbulent flow analysis in a hydrodynamic torque converter. Engineering Applications of Computational Fluid Mechanics, 12(1), 2018, 635 – 651. DOI:10.1080/19942060.2 018.1489896
  • 15. Liu C., Yang K., Li J., Xu Z., Wang T. Performance improvement and flow field investigation in hydraulic torque converter based on a new design of segmented blades. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(8), 2020, 2162 – 2175. DOI:10.1177/0954407019899507
  • 16. Ota Y., Iio S., Mori Y., Kondo S. Investigation of flattened torque converter performance at low speed ratio. IOP Conference Series: Earth and Environmental Science, 240(9), 2019, 1 – 6. DOI:10.1088/1755-1315/240/9/092007
  • 17. Srinivasan C., Joshi D., Dhar S., Wang De M. Dynamic three-dimensional CFD simulation of closed circuit torque converter systems. SAE International Journal of Passenger Cars Mechanical Systems 9(1), 2016, 289 – 300. DOI:10.4271/2016-01-1345
  • 18. Liu C., Untaroiu A., Wood H. G., Yan Q., Wei W. Parametric analysis and optimization of inlet deflection angle in torque converters. Journal of Fluids Engineering, 137(3), 2015, 1 – 10. DOI:10.1115/1.4028596
  • 19. Liu C., Wei W., Yan Q. and Morgan N. R. Design of experiments to investigate blade geometric effects on the hydrodynamic performance of torque converters. Proceedings of the Institution of Mechanical Engineers, Part D: Journal Automobile Engineering, 233(2), 2017, 276 – 291. DOI:10.1177/0954407017742573
  • 20. Kęsy A. and Kądziela A. Construction optimization of hydrodynamic torque converter with application of genetic algorithm. Archives of Civil and Mechanical Engineering, 11(4), 2011, 905 – 920. DOI:10.1016/S1644-9665(12)60086-7
  • 21. Stesin S. P. Blade machines and hydrodynamic torque converters. Machinostrjenie, 1990 (in Russian).
  • 22. Hewko L. Automotive traction drive CVTs An overview. SAE Technical Paper, 861355, 1986, 1 – 16. DOI:10.4271/861355
  • 23. Weston E. B. Theory and design of automotive transmission components. Butterworths, 1967. ISBN-10 : 0408681004
  • 24. Clements H. A. Stopping and reversing high power ships. Proceedings of the ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition. Volume 2: Aircraft Engine; Marine; Microturbines and Small Turbomachinery, Toronto, Ontario, Canada 1989, 1 – 11. DOI:10.1115/89-GT-231
  • 25. Brun K., Meyenberg C., Thorp J. and Kurz R. Hydrodynamic torque converters for oil & gas compression and pumping applications: basic principles, performance characteristics and applications. 44th Turbomachinery and 31st Pump Symposia, Houston, Texas 2015, 1 – 14. DOI:10.21423/ R14C9Q
  • 26. Kęsy Z. Numerical analysis of torque carried by vehicle hydrodynamic clutch with electrorheological working fluid. International Journal of Vehicle Design, 38(2/3), 2005, 210 – 221. DOI:10.1504/ IJVD.2005.007293
  • 27. Olszak A., Osowski K., Kęsy Z., Kęsy A. Modelling and testing of a hydrodynamic clutch filled with electrorheological fluid in varying degree. Journal of Intelligent Material Systems and Structures, 30(4), 2019, 649 – 660. DOI:10.1177/1045389X18818780
  • 28. Olszak A., Osowski K., Kęsy Z. and Kęsy A. Investigation of hydrodynamic clutch with MR fluid. Journal of Intelligent Material Systems and Structures, 30(1), 2019, 155 – 168. DOI:10.1177/1045389X18803463
  • 29. Müller H., Pöller M., Basteck A., Tilscher M. and Pfister J. Grid compatibility of variable speed wind turbines with directly coupled synchronous generator and hydro-dynamically controlled gearbox. Sixth International Workshop on Large-Scale Integration of Wind Power and Transmission Networks for Offshore Wind Farms, Delft, Netherlands 2006, 307 – 315. OSTI ID: 21423397, TRN: NL11E0590, Corpus ID: 107580122
  • 30. Ha K. Innovative blade trailing edge flap design concept using flexible torsion bar and worm drive. HighTech and Innovation Journal, 1(3), 2020, 101– 106. DOI: 10.28991/HIJ-2020-01-03-01
  • 31. Rahimi F., Aghayari R., Samali B. Application of tuned mass dampers for structural vibration control: A state-of-the-art review. Civil Engineering Journal, 6(8), 2020, 1622 – 1651. DOI:10.28991/ cej-2020-03091571
  • 32. Zhang W., Yang X., Wang T., Peng X., Wang X. Experimental study of a gas engine-driven heat pump system for space heating and cooling. Civil Engineering Journal, 5(10), 2019, 2282 – 2295. DOI:10.28991/cej-2019-03091411
  • 33. Adibi-Asl H., Azad N. L., McPhee J. Math-based torque converter modelling to evaluate damping characteristics and reverse flow mode operation. International Journal of Vehicle Systems Modelling and Testing, 9(1), 2014, 36 – 55. DOI:10.1504/ ijvsmt.2014.059155
  • 34. Adibi-Asl H., Azad N. L., McPhee J. Modeling torque converter characteristics in automatic drivelines: lock-up clutch and engine braking simulation. ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, IL, USA 2012, 1 – 9. DOI:10.1115/DETC2012-70222
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e62bec58-e993-4047-9f16-5ec3cd70ba84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.