PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quantitative dosimetric analysis with independent software solutions and comprehensive treatment plan parameter evaluation in skin brachytherapy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background and Purpose: This study aimed to investigate quantitative dosimetric analysis with independent software solutions and comprehensive treatment plan parameter evaluation for the treatment of skin cancer. Specifically, we aimed to conduct a dosimetric analysis of the treatment plan and we presented the clinical parameters used in our institution of clinically used treatment plans. Materials and Methods: This study compares dose calculations between BrachyVision v16.1 and RadCalc v7.2 for brachytherapy applications. It evaluates key treatment plan parameters, including V100, V150, V200, D90, CI, DNR, mean treatment depth, treatment time, and various Gamma values. Dose calculations utilized the 192-Ir GammaMed HDR Plus source. RadCalc employed a referenced model. Applicators were 3D printed using PLA as the printing filament. Results: The study assessed compliance for 20 patient plans, finding a mean dose difference of 0.05% with a standard deviation of 0.26%. V100, V150, and V200 showed high compliance, with V100 having a minimal mean difference of 0.01%, a standard deviation of 0.02% and V200 exhibiting the lowest compliance 0.52%, a standard deviation of 1.72%. D90 values displayed high compliance with a mean difference of 0.35%, and a standard deviation of 1.85%. The coverage index parameter was strongly supported (R²: 0.984). DNR values indicated close agreement with a mean difference of 0.01%, a standard deviation: of 0.10%. The average Gamma value was 99.91% with a standard deviation of 0.11%. Conclusion: The agreement between treatment planning system and independent software solutions results validates treatment planning accuracy. This supports the method's suitability for patient care and encourages wider adoption, ensuring quality assurance in clinical settings.
Rocznik
Strony
169--176
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Radiotherapy Center - The National Institute of Medicine of the Ministry of the Interior and Administration, Woloska 137, 02-507, Warsaw, Poland
  • Radiotherapy Center - The National Institute of Medicine of the Ministry of the Interior and Administration, Woloska 137, 02-507, Warsaw, Poland
  • Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
  • Dermatology Clinic - The National Institute of Medicine of the Ministry of the Interior and Administration, Woloska 137, 02-507, Warsaw, Poland
  • Department of Dermatology, Centre of Postgraduate Medical Education, 02-507 Warsaw, Poland
  • Dermatology Clinic - The National Institute of Medicine of the Ministry of the Interior and Administration, Woloska 137, 02-507, Warsaw, Poland
  • Department of Dermatology, Centre of Postgraduate Medical Education, 02-507 Warsaw, Poland
  • Dermatology Clinic - The National Institute of Medicine of the Ministry of the Interior and Administration, Woloska 137, 02-507, Warsaw, Poland
  • Department of Dermatology, Centre of Postgraduate Medical Education, 02-507 Warsaw, Poland
Bibliografia
  • 1. Neville JA, Welch E, Leffell DJ. Management of nonmelanoma skin cancer in 2007. Nat Rev Clin Oncol. 2007;4(8):462-469. https://doi.org/10.1038/ncponc0883
  • 2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clinicians. 2018;68(6):394-424. https://doi.org/10.3322/caac.21492
  • 3. Madan V, Lear JT, Szeimies RM. Non-melanoma skin cancer. The Lancet. 2010;375(9715):673-685. https://doi.org/10.1016/s0140-6736(09)61196-x
  • 4. Bath‐Hextall F, Leonardi‐Bee J, Smith C, Meal A, Hubbard R. Trends in incidence of skin basal cell carcinoma. Additional evidence from a UK primary care database study. Intl Journal of Cancer. 2007;121(9):2105-2108. https://doi.org/10.1002/ijc.22952
  • 5. Gerbaulet A. The GEC ESTRO Handbook of Brachytherapy. ESTRO, Brü ssel, 2002
  • 6. Subashi E, Jacobs C, Hood R, Kirsch DG, Craciunescu O. A design process for a 3D printed patient-specific applicator for HDR brachytherapy of the orbit. 3D Print Med. 2020;6(1). https://doi.org/10.1186/s41205-020-00068-3
  • 7. Zhao Y, Moran K, Yewondwossen M, et al. Clinical applications of 3-dimensional printing in radiation therapy. Medical Dosimetry. 2017;42(2):150-155. https://doi.org/10.1016/j.meddos.2017.03.001
  • 8. Park SY, Kang S, Park JM, An HJ, Oh DH, Kim J in. Development and dosimetric assessment of a patient-specific elastic skin applicator for high-dose-rate brachytherapy. Brachytherapy. 2019;18(2):224-232. https://doi.org/10.1016/j.brachy.2018.11.001
  • 9. Diefenhardt M, Chatzikonstantinou G, Meissner M, et al. HDR brachytherapy with individual epithetic molds for facial skin cancer: techniques and first clinical experience. Int J Dermatology. 2021;60(6):717-723. https://doi.org/10.1111/ijd.15492
  • 10. Casey S, Bahl G, Awotwi-Pratt JB. High Dose Rate 192-Ir-Brachytherapy for Basal Cell Carcinoma of the Skin using a 3D Printed Surface Mold. Cureus. Published online June 17, 2019. https://doi.org/10.7759/cureus.4913
  • 11. Arenas M, Sabater S, Sintas A, et al. Individualized 3D scanning and printing for non-melanoma skin cancer brachytherapy: a financial study for its integration into clinical workflow. jcb. 2017;3:270-276. https://doi.org/10.5114/jcb.2017.68134
  • 12. Bielęda G, Chicheł A, Boehlke M, et al. 3D printing of individual skin brachytherapy applicator: design, manufacturing, and early clinical results. jcb. 2022;14(2):205-214. https://doi.org/10.5114/jcb.2022.114353
  • 13. Oare C, Wilke C, Ehler E, Mathew D, Sterling D, Ferreira C. Dose calibration of Gafchromic EBT3 film for Ir-192 brachytherapy source using 3D-printed PLA and ABS plastics. 3D Print Med. 2019;5(1). https://doi.org/10.1186/s41205-019-0040-4
  • 14. Gholami S, Mirzaei HR, et al. A novel phantom design for brachytherapy quality assurance. IJRR. 2016;14(1):67-71. https://doi.org/10.18869/acadpub.ijrr.14.1.67
  • 15. Hsu SM, Wu CH, Lee JH, et al. A Study on the Dose Distributions in Various Materials from an Ir-192 HDR Brachytherapy Source. Deutsch E, ed. PLoS ONE. 2012;7(9):e44528. https://doi.org/10.1371/journal.pone.0044528
  • 16. Sinnatamby M, Nagarajan V, Kanipakam RS, Karunanidhi G, Neelakandan V, Kandasamy S. Verification of Radiation Fluence using Stack Film in HDR Brachytherapy with Heterogeneity Algorithm. JCDR. Published online 2018. https://doi.org/10.7860/jcdr/2018/36733.12258
  • 17. Palmer AL, Bradley D, Nisbet A. Evaluation and implementation of triple‐channel radiochromic film dosimetry in brachytherapy. J Applied Clin Med Phys. 2014;15(4):280-296. https://doi.org/10.1120/jacmp.v15i4.4854
  • 18. Devic S. Radiochromic film dosimetry: Past, present, and future. Physica Medica. 2011;27(3):122-134. https://doi.org/10.1016/j.ejmp.2010.10.001
  • 19. Bielęda G, Marach A, Boehlke M, Zwierzchowski G, Malicki J. 3D-printed surface applicators for brachytherapy: a phantom study. jcb. 2021;13(5):549-562. https://doi.org/10.5114/jcb.2021.110304
  • 20. Wolfsberger LD, Wagar M, Nitsch P, Bhagwat MS, Zygmanski P. Angular dose dependency of MatriXX TM and its calibration. J Applied Clin Med Phys. 2010;11(1):241-251. https://doi.org/10.1120/jacmp.v11i1.3057
  • 21. Austerlitz C, Campos CAT. A BrachyPhantom for verification of dose calculation of HDR brachytherapy planning system. Medical Physics. 2013;40(11). https://doi.org/10.1118/1.4826170
  • 22. Yoosuf ABM, Jeevanandam P, Whitten G, Workman G, McGarry CK. Verification of high-dose-rate brachytherapy treatment planning dose distribution using liquid-filled ionization chamber array. JCB. 2018;10(2):142-154. https://doi.org/10.5114/jcb.2018.75599
  • 23. Poppe B, Stelljes TS, Looe HK, Chofor N, Harder D, Willborn K. Performance parameters of a liquid filled ionization chamber array. Med Phys. 2013;40(8):082106. https://doi.org/10.1118/1.4816298
  • 24. Sarfehnia A, Kawrakow I, Seuntjens J. Direct measurement of absorbed dose to water in HDR I192r brachytherapy: Water calorimetry, ionization chamber, Gafchromic film, and TG-43. Med Phys. 2010;37(4):1924-1932. https://doi.org/10.1118/1.3352685
  • 25. Gambarini G, Borroni M, Grisotto S, et al. Solid state TL detectors for in vivo dosimetry in brachytherapy. Applied Radiation and Isotopes. 2012;71:48-51. https://doi.org/10.1016/j.apradiso.2012.06.018
  • 26. Avilés Lucas P, Lourenço V, Vermesse D, Cutarella D, Aubineau-Lanièce I. Absorbed dose to water distribution measured around an HDR192Ir brachytherapy source by thermoluminescent dosimeters. Metrologia. 2012;49(5):S228-S230. https://doi.org/10.1088/0026-1394/49/5/s228
  • 27. Bassi S, Berrigan L, Zuchora A, Fahy L, Moore M. End-to-end dosimetric audit: A novel procedure developed for Irish HDR brachytherapy centres. Physica Medica. 2020;80:221-229. https://doi.org/10.1016/j.ejmp.2020.10.005
  • 28. Lambert J, Nakano T, Law S, Elsey J, McKenzie DR, Suchowerska N. In vivo dosimeters for HDR brachytherapy: A comparison of a diamond detector, MOSFET, TLD, and scintillation detector. Medical Physics. 2007;34(5):1759-1765. https://doi.org/10.1118/1.2727248
  • 29. Watanabe Y, Maeyama T, Mochizuki A, et al. Verification of dose distribution in high-dose-rate brachytherapy using a nanoclay-based radio-fluorogenic gel dosimeter. Phys Med Biol. 2020;65(17):175008. https://doi.org/10.1088/1361-6560/ab98d2
  • 30. Venning A, Healy B, Nitschke K, Baldock C. Investigation of the MAGAS normoxic polymer gel dosimeter with Pyrex glass walls for clinical radiotherapy dosimetry. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2005;555(1-2):396-402. https://doi.org/10.1016/j.nima.2005.09.002
  • 31. Ibbott GS. Applications of gel dosimetry. J Phys: Conf Ser. 2004;3:58-77. https://doi.org/10.1088/1742-6596/3/1/007
  • 32. Senkesen O, Tezcanli E, Buyuksarac B, Ozbay I. Comparison of 3D dose distributions for HDR 192Ir brachytherapy sources with normoxic polymer gel dosimetry and treatment planning system. Medical Dosimetry. 2014;39(3):266-271. https://doi.org/10.1016/j.meddos.2014.04.003
  • 33. Carrara M, Fallai C, Gambarini G, Negri A. Fricke gel-layer dosimetry in high dose-rate brachytherapy. Applied Radiation and Isotopes. 2010;68(4-5):722-725. https://doi.org/10.1016/j.apradiso.2009.09.036
  • 34. Poder J, Corde S. I‐125 ROPES eye plaque dosimetry: Validation of a commercial 3D ophthalmic brachytherapy treatment planning system and independent dose calculation software with GafChromic® EBT3 films. Medical Physics. 2013;40(12). https://doi.org/10.1118/1.4828786
  • 35. Pagulayan C, Heng SM, Corde S. Dosimetric validation of the Theragenics AgX-100® I-125 seed for ROPES eye plaque brachytherapy. Australas Phys Eng Sci Med. 2019;42(2):599-609. https://doi.org/10.1007/s13246-019-00761-6
  • 36. Deufel CL, Furutani KM. Quality assurance for high dose rate brachytherapy treatment planning optimization: using a simple optimization to verify a complex optimization. Phys Med Biol. 2014;59(3):525-540. https://doi.org/10.1088/0031-9155/59/3/525
  • 37. Dempsey C. Methodology for commissioning a brachytherapy treatment planning system in the era of 3D planning. Australas Phys Eng Sci Med. 2010;33(4):341-349. https://doi.org/10.1007/s13246-010-0036-2
  • 38. Damato AL, Devlin PM, Bhagwat MS, et al. Independent brachytherapy plan verification software: Improving efficacy and efficiency. Radiotherapy and Oncology. 2014;113(3):420-424. https://doi.org/10.1016/j.radonc.2014.09.015
  • 39. Shirazi MAM, Faghihi R, Siavashpour Z, Nedaie HA, Mehdizadeh S, Sina S. Independent evaluation of an in‐house brachytherapy treatment planning system using simulation, measurement and calculation methods. J Applied Clin Med Phys. 2012;13(2):103-112. https://doi.org/10.1120/jacmp.v13i2.3687
  • 40. Ballester F, Puchades V, Lluch JL, et al. Technical note: Monte‐Carlo dosimetry of the HDR 12i and Plus sources. Medical Physics. 2001;28(12):2586-2591. https://doi.org/10.1118/1.1420398
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e62a41cc-6ff1-4513-9191-18cb53928b01
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.