PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of cold working on microstructure and properties of annealing CuTi4 alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this study was to investigate the effect of cold plastic deformation of the supersaturation on the structure and properties of the CuTi4 alloy after aging. Design/methodology/approach: CuTi4 alloy of supersaturation temperature of 900°C after heating for 1 hour. After solutioning alloy was processed in two ways: first aged in the temperature range 450-600°C and the second stage rolling reduction with Z=50%, and then aged in the temperature range 450-600°C. Findings: The results confirmed that the temperature within the range 500-600°C, the hardness increases with increasing aging time until reaching the maximum, but then with increasing aging time the hardness decreases. By using methods of electron microscopy (SEM, EDS, EBSD, TEM) after aging at 550°C after 1 minute of modulated microstructure was observed - characteristic for the spinodal transformation and lamellar, formed by nucleation and growth. Research limitations/implications: A widely used method for increasing the strength properties of metal alloys, in addition to cold plastic deformation, is the strengthening of new phases separated particles during aging. The effect of cold rolling operation between solutioning and aging on microstructure and properties of alloyed copper CuTi4. Further examination also included the effect of time and aging temperature. Practical implications: On the basis of conductivity, the influence of cold plastic deformation and subsequent aging on the hardness and electrical conductivity of the alloy CuTi4. It was found that with increasing aging time and with increasing aging temperature increases electrical conductivity of the alloy. On the basis of X-rays can be concluded that in alloyed copper containing 4% Ti and precipitation hardening metastable phase β’-Cu4Ti is separated, which occurs both in the previously deformed and undeformed cold worked alloy.
Rocznik
Strony
331--338
Opis fizyczny
Bibliogr. 45 poz., rys.
Twórcy
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Institute of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
Bibliografia
  • [1] W. Ozgowicz, E. Kalinowska-Ozgowicz, B. Grzegorczyk, The influence of the temperature of tensile test on the structure and plastic properties of copper alloy type CuCr1Zr, Journal of Achievements in Materials and Manufacturing Engineering 29/2 (2008) 123-136.
  • [2] W. Ozgowicz, E. Kalinowska-Ozgowicz, B. Grzegorczyk, The microstructure and mechanical properties of the alloy CuZn30 after recrystallizion annealing, Journal of Achievements in Materials and Manufacturing Engineering 40/1 (2010) 15-24.
  • [3] Z. Rdzawski, J. Stobrawa, W. Głuchowski, J. Konieczny, Thermomechanical processing of CuTi4 alloy, Journal of Achievements in Materials and Manufacturing Engineering 42 (2010) 9-25.
  • [4] J. Konieczny, Z. Rdzawski, Misorientation in rolled CuTi4 alloy, Archives of Materials Science and Engineering 52/1 (2011) 5-12.
  • [5] J. Konieczny, Z. Rdzawski, Structure of rolled CuTi4 alloy, Journal of Achievements in Materials and Manufacturing Engineering 50/1 (2012) 26-39.
  • [6] Z.M. Rdzawski, J. Stobrawa, W. Głuchowski, Structure and properties of CuFe2 alloy, Journal of Achievements in Materials and Manufacturing Engineering 33/1 (2009) 7-18.
  • [7] J.P. Stobrawa, Z.M. Rdzawski, Dispersion - strengthened nanocrystalline copper, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 35-42.
  • [8] J.P. Stobrawa, Z.M. Rdzawski, W.J. Głuchowski, Microstructure and properties of nanocrystalline copper-yttria microcomposites, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 83-86.
  • [9] J.P. Stobrawa, Z.M. Rdzawski, W. Gáuchowski, W. Malec, Microstructure evolution in CRCS processed strips of CuCr0.6 alloy, Journal of Achievements in Materials and Manufacturing Engineering 38/2 (2010) 195-202.
  • [10] J. Stobrawa, Z. Rdzawski, W. Gáuchowski, W. Malec, Ultrafine grained strips of CuCr0.6 alloy prepared by CRCS method, Journal of Achievements in Materials and Manufacturing Engineering 33/2 (2009) 166-172.
  • [11] J.P. Stobrawa, Z.M. Rdzawski, W. Głuchowski, Structure and properties of dispersion hardened submicron grained copper, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 195-198.
  • [12] J.P. Stobrawa, Z.M. Rdzawski, Thermal stability of functional properties in dispersion and precipitation hardened selected copper alloys, Archives of Materials Science and Engineering 30/1 (2008) 17-20.
  • [13] Z. Rdzawski, Alloyed copper, Silesian University of Technology Publishing House, Gliwice, 2009, 24 (in Polish).
  • [14] S. Nagarjuna, K.K. Sharma, I. Sudhakar, D.S. Sarma, Age hardening studies in a Cu-4.5Ti-0.5Co alloy, Materials Science and Engineering A 313 (2001) 251-260.
  • [15] L.A. Dobrzański, Engineering metallic materials, WNT, Warsaw, 2004 (in Polish).
  • [16] M. Tokarski, An outline of metallurgy of non-ferrous metals and alloys, Wydawnictwo Śląsk, Katowice, 1985 (in Polish).
  • [17] L. Blacha, W. Szkliniarz, G. Siwiec, A. Kościelna, Influence of production parameters on the quality of the ingot alloy Cu-Ti, Ores and Non-Ferrous Metals 53/12 (2008) 784-789 (in Polish).
  • [18] Z. Rdzawski, K. Ducki, M. Jabłońska, A. Śmiglewicz, The properties and microstructure of the CuNi2Si1 alloy, Ores and Non-Ferrous Metals 55/2 (2010) 78-83.
  • [19] Q. Lei, Z. Li, M.P. Wanga, L. Zhanga, Z. Xiaoc, Y.L. Jia, The evolution of microstructure in Cu-8.0Ni-1.8Si-0.15Mg alloy during aging, Materials Science and Engineering A 527 (2010) 6728-6733.
  • [20] E. Lee, S. Han, K. Euh, S. Lim, S. Kim, Effect of Ti Addition on Tensile Properties of Cu-Ni-Si Alloys, Metals and Materials International 17/4 (2011) 569-576.
  • [21] T.J. Konno, R. Nishio, S. Semboshi, T. Ohsuna, E. Okunishi, Aging behavior of Cu-Ti-Al alloy observed by transmission electron microscopy, Journal of Materials Science 43/11 (2008) 3761-3768.
  • [22] S. Nagarjuna, D.S. Sarma, Effect of cobalt additions on the age hardening of Cu-4.5Ti alloy, Journal of Materials Science 37 (2002) 1929-1940.
  • [23] R. Markandeya, S. Nagarjuna, D.S. Sarma, Precipitation Hardening of Cu-3Ti-1Cd Alloy, Journal of Materials Engineering and Performance 16 (2007) 640-646.
  • [24] R. Markandeya, S. Nagarjuna, D.S. Sarma, Effect of priori cold work on age hardening of Cu-4Ti-1Cr alloy, Materials Science and Engineering A 404 (2005) 305-313.
  • [25] A. Datta, W.A. Soffa, The structure and properties of age hardened Cu-Ti alloys, Acta Metallurgica 24/11 (1976) 987-1001.
  • [26] S. Nagarjuna, K. Balasubramanian, D.S. Sarma, Effect of prior cold work on mechanical properties, electrical conductivity and microstructure of aged Cu-Ti alloys, Journal of Materials Science 34 (1999) 2929-2942.
  • [27] L. Blacha, G. Siwiec, A. Kościelna, A. Dudzik-Truś, Effect of titanium contents on the microstructure and properties of alloys of the Cu-Ti alloys, Material Engineering 6 (2009) 520-524 (in Polish).
  • [28] D. Watanabe, Ch. Watanabe, R. Monzen, Effect of coherency on coarsening of second-phase precipitates in Cubase alloys, Journal of Materials Science 43 (2008) 3946-3953.
  • [29] S. Semboshi, T. Al-Kassab, R. Gemma, R. Kirchheim, Microstructural evolution of Cu-1 at% Ti alloy aged In a hydrogen atmosphere ant its relation with the electrical conductivity, Ultramicroscopy 109 (2009) 593-598.
  • [30] S. Nagarjuna, M. Srinivas, Grain refinement during high temperature tensil testing of prior cold worked and peak aged Cu-Ti alloys: Evidence of superplasticity, Materials Science and Engineering A 498 (2008) 468-474.
  • [31] L. Blacha, W. Szkliniarz, A. Kościelna, A. Dudzik-Truś, Influence of solutioning and aging parameters to the microstructure and properties of alloys Cu-Ti system, Material Engineering 1 (2010) 42-45 (in Polish).
  • [32] A.A. Hameda, L. Błaż, Microstructure of hot-deformed Cu-3.45 wt.% Ti alloy, Materials Science and Engineering A 254 (1998) 83-89.
  • [33] Z. Rdzawski, J. Stobrawa, W. Głuchowski, J. Konieczny, Thermomechanical processing of CuTi4 alloy, Journal of Achievements in Materials and Manufacturing Engineering 42 (2010) 9-25.
  • [34] N. Boonyachut, Y. Peng, W.A. Soffa, D.E. Laughlin, On the product phases of the cellular transformation in Cu-Ti age hardening alloys, Proceedings of the International Conference on “Solid-to-Solid Phase Transformations in Inorganic Materials”, Volume 1, Diffusional Transformations, Phoenix, 2005, 687-694.
  • [35] R.W. Fonda, M.A. Mangan, G.J. Shiflet, The Effect of Undercooling on the Cellular Precipitation Reaction in Cu-3 Pct Ti, Metallurgical and Materials Transactions A 29 (1998) 2101-2110.
  • [36] J. Dutkiewicz, Spinodal decomposition, ordering, and discontinuous precipitation in deformed and aged copper-titanium alloys, Metals Technology 5 (1978) 333-400.
  • [37] S. Nagarjuna, K. Balasubramanian, D.S. Sarma, Effect of Cold Work on Percipitation Hardening of Cu-4.5 mas. %Ti alloy, Materials Transactions 36/8 (1995) 1058-1066.
  • [38] R. Markandeya, S. Nagarjuna, D.S. Sarma, Characterization of prior cold worked and age hardened Cu-3Ti-1Cd alloy, Materials Characterization 54 (2005) 360-364.
  • [39] S. Nagarjuna, K. Balasubramanian, D.S. Sarma, Effect of prior cold work on mechanical properties and structure of an age-hardened Cu-1.5wt% Ti alloy, Journal of Materials Science 32 (1997) 3375-3385.
  • [40] J. Dutkiewicz, Electron microscope study of the effect of deformation on precipitation and recrystallization in copper-titanium alloys, Metallurgical Transactions A 8 (1997) 751-759.
  • [41] S. Nagarjuna, M. Srinivas, K. Balasubramanian, D. Sarma, Effect of modulations on yield stress and strain hardening exponent of solution treated Cu-Ti alloys, Scripta Materialia 38/9 (1998) 1469-1474.
  • [42] J. Dutkiewicz, The mechanism of spinodal and discontinuous transformation and ordering processes in aged alloys of A1 lattice, Scientific Papers University, Metallurgy and Foundry 80, Cracow, 1977 (in Polish).
  • [43] L.A. Dobrzański, Fundamentals of materials science and metallurgy, materials engineering with the basics of designing a material, WNT, Gliwice-Warsaw, 2002 (in Polish).
  • [44] J. Adamczyk, Engineering of metallic materials, part 1, Wydawnictwo Politechniki Śląskiej, Gliwice, 2004 (in Polish).
  • [45] Z. Rdzawski, Study of copper alloys with special properties, stage I, The mechanism of strengthening alloys, a review of research on alloy CuBe, Report IMN (Institute of Non-Ferrous Metals) nr 6156/I/04, 2004, unpublished work (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6256c1d-c969-4e00-b010-70d0dda39d94
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.