Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this work was to investigate the effect of partial substitution of Mn by Nb on structure and thermomagnetic properties in the (Mn, Nb)-Co-Ge alloy. The master alloys were prepared by arc-melting in an arc furnace with high purity of constituent elements under a low pressure of Ar. The prepared specimens were studied in as-cast state. The X-ray was performed by BRUKER D8 Advance diffractrometer with Cu Kα radiation. The analysis of the XRD pattern revealed coexistence of two orthorhombic phases with different lattice constants. The analysis of the temperature dependence of magnetizaton confirmed the XRD results and showed that produced material manifested two magnetic phase transitions corresponding to detected phases. The values of the Curie temperature were 275 and 325 K. The values of magnetic entropy change ∆SM equaled 3.30 and 2.13 J/(kg K), respectively for recognized phases. Biphase structure of produced material allowed to reach relatively high refigeration capacity 307 J/(kg). Moreover, the analysis of field dependences of magnetic entropy change (∆SM = CBn) allowed to construct temperature dependence of exponent n. The analysis of elaborated n vs. T curve confirmed biphasic structure of produced material.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
879--883
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wzory
Twórcy
autor
- Czestochowa University of Technology, Institute of Physics, 19 Armii Krajowej Av., 42-200, Częstochowa, Poland
autor
- Czestochowa University of Technology, Institute of Physics, 19 Armii Krajowej Av., 42-200, Częstochowa, Poland
autor
- Czestochowa University of Technology, Institute of Physics, 19 Armii Krajowej Av., 42-200, Częstochowa, Poland
Bibliografia
- [1] A.M. Tishin, Handbook of Magnetic Materials, Vol. 12, Ed. K.H.J. Bushow, Amsterdam, p. 395. (1999).
- [2] M. Duraj, A. Szytuła, APhysPolA 117, 4, 603-606 (2010). DOI: https://doi.org/10.12693/APhysPolA.117.603.
- [3] M. Yue, J. Zhang, H. Zeng, H. Chen, X.B. Liu, J. Appl. Phys. 99, 08Q104 (2006).
- [4] A. Fujita, Y. Akamatsu, K. Fukamichi, J. Appl. Phys. 85, 4756 (1999).
- [5] P. Gebara, J. Kovac, J. Magn. Magn. Mater. 454, 298 (2018).
- [6] W. Zhong, W. Cheng, W.P. Ding, N. Zhang, Y.W. Du, Q.J. Yan, Solid State Commun. 106, 55 (1998).
- [7] A. He, V. Svitlyk, Y. Mozharivskyj, Inorg. Chem. 56, 2827 (2017).
- [8] M. Koller, T. Chraska, J. Cinert, O. Heczko, J. Kopecek, M. Landa, R. Musalek, M. Rames, H. Siner, J. Strasky, M. Janecek, Material & Desing 126, 351-257 (2017).
- [9] Y. Kuang, B. Yang, X. Hao, H. Xu, Z. Li, H. Yan, Y. Zhang, C. Esling, X. Zhao, L. Zuo, Journal of Magnetism and Magnetic Materials 506, 166782 (2020).
- [10] N.P. Fuong, L.T. Hung, T.D. Hien, N.P. Thuy, N.T. Trung, E. Bruck, Journal of Magnetism and Magnetic Materials 311, 605-608 (2007).
- [11] M. Zhang, Z. Liu, H. Hu, Y. Cui, G. Liu, J. Chen, G. Wu, Y. Sui, Z. Qian, Z. Li, H. Tao, B. Zhao, H. Wen, Solid State Communications 128, 107-111 (2003).
- [12] J. Pierre, K. Kaczmarska, J. Tobola, R.V. Skolozdra, G.A. Melnyk, Physica B 259-261, 841-842 (1999).
- [13] X.Y. Wu, J. Zhang, H.K. Yuan, A.L. Kuang, H. Chen, Phys. Status Solid B 247, 4, 945-949 (2010).
- [14] S. Heinz, B. Balke, G. Jakob, Thin Solid Films 692, 137581 (2019).
- [15] E. Bruck, M. Ilyn, A.M. Tishin, O. Tegus, Journal of Magnetism and Magnetic Materials 290-291, 8-13 (2005).
- [16] N.T. Trung, L. Zhang, L. Caron, K.H.J. Buschow, E. Bruck, Appl. Phys. Lett. 96, 172504 (2010).
- [17] S.K. Enamullah, K. Sharma, Ansari, Physica B 588, 412172 (2020).
- [18] A. Beloufa, B. Bakhati, D. Bouguenna, M.R. Chellali, Physica B: Condensed Matter 563, 50-55 (2019).
- [19] T. Graf, F. Casper, J. Winterlik, B. Balke, G.H. Fecher, C. Felser, Crystal Structure of New Heusler Compounds. DOI: https://doi.org/10.1002/zaac.200900036
- [20] D. Bende, F.R. Wagner, Y. Grin, Inorg. Chem. 54, 3970-3978, (2015). DOI: https://doi.org/10.1021/acs.inorgchem.5b00135
- [21] P. Gębara, Z. Śniadecki, Journal of Alloys and Compounds 796, 153-159 (2019).
- [22] S.Y. Emre, Journal of Magnetics 18, 4, 405-411 (2013).
- [23] P. Gębara, K. Kutynia, 10.12693/APhysPolA. 135, 298 (2019).
- [24] W. Kraus, G. Nolze, PowderCell 2.0 for Windows. Powder Diffr. 13 (4), 256 (1998).
- [25] V.K. Pecharsky, K.A. Gschneidner Jr, J. Magn. Magn. Mater. 200, 44 (1999).
- [26] M.E. Wood, W.H. Potter, General analysis of magnetic refrigation and its optimization using a new concept: maximization of refrigerant capacity, Cryogenics 25 (12), 667-683 (1985).
- [27] V. Franco, A. Conde, Scalling laws for the magnetocaloric effect in second order phase transitions: from physics to applications for the characterization of materials, Int. J. Refrig. 33 (3), 465 (2010).
- [28] V. Franco, J.S. Blazquez, A. Conde, Influence of Ge addition on the magnetocaloric effect of a Co-containing nanoperm-type alloy, J. Appl. Phys. 103 (7), 07b316 (2008).
- [29] V. Franco, A. Conde, V. Provenzano, R. Shull, Scaling analysis of the magnetocaloric effect in Gd5Si2Ge1.9X0.1 (X = Al, Cu, Ga, Mn, Fe, Co). J. Magn. Magn. Mater. 322 (2), 218 (2010).
- [30] P. Gębara, Magnetocaloric effect of LaFe11.35Co0.6Si1.05 alloy, Rare Met. DOI: https://doi.org/10.1007/s12598-017-0917-6
- [31] J. Świerczek, Superparamagnetic behavior and magnetic entropy change inpartially crystallized Fe-Mo-Cu-B, Phys. Status Solidi A 211 1567-1576 (2014).
- [32] X. Si, K. Zhou, R. Zhang, Y. Liu, J. Qi, Journal Of Applied Physics, 121 (11), 113902 (2017). DOI: https://doi.org/10.1063/1.4978605
- [33] J.C. Debnath, A.M. Strydom, P. Shamba, J.L. Wang, S.X. Dou, Journal of Applied Physics 113 (23), 233903 (2013). DOI: https://doi.org/10.1063/1.4811342
Uwagi
1. The authors would like to thank Prof. Jan Świerczek, The Head of Department of Physics Częstochowa University of Technology for financial support.
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e620dd54-ce63-47c8-843b-65f1af3ad243