PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Handling high and low priority traffic in multi-layer networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we propose a novel priority-aware solution named bypass to handle high- and low-priority traffic in multi-layer networks. Our approach assumes diversification of elastic optical spectrum to ensure additional resources reserved for emergency situations. When congestion occurs, the solution dynamically provides new paths, allocating a hidden spectrum to offload traffic from the congested links in the IP layer. Resources for a bypass are selected based on traffic priority. High-priority traffic always gets the shortest bypasses in terms of physical distance, which minimizes delay. Bypasses for low-priority traffic can be established if the utilization of the spectrum along the path is below the assumed threshold. The software-defined networking controller ensures the global view of the network and cooperation between IP and elastic optical layers. Simulation results show that the solution successfully reduces the amount of rejected high-priority traffic when compared to regular bypasses and when no bypasses are used. Also, overall bandwidth blocking probability is lower when our priority-aware bypasses are used.
Rocznik
Strony
art. no. e145568
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Institute of Telecommunications, AGH University of Science and Technology, Kraków, Poland
  • Institute of Telecommunications, AGH University of Science and Technology, Kraków, Poland
  • Institute of Telecommunications, AGH University of Science and Technology, Kraków, Poland
  • Institute of Telecommunications, AGH University of Science and Technology, Kraków, Poland
  • Institute of Telecommunications, AGH University of Science and Technology, Kraków, Poland
Bibliografia
  • [1] S. Fichera, R. Martínez, B. Martini, M. Gharbaoui, R. Casellas, D.R. Vilalta, R. Muñoz, and P. Castoldi, “Latency-aware resource orchestration in sdn-based packet over optical flexi-grid transport networks,” IEEE/OSA J. Opt. Commun. Netw., vol. 11, no. 4, pp. B83–B96, April 2019, doi: 10.1364/JOCN.11.000B83.
  • [2] M. Jinno, “Elastic optical networking: Roles and benefits in beyond 100-gb/s era,” J. Lightwave Technol., vol. 35, no. 5, pp. 1116–1124, March 2017, doi: 10.1109/JLT.2016.2642480.
  • [3] V. Lopez, D. Konidis, D. Siracusa, C. Rozic, I. Tomkos, and J.P. Fernandez-Palacios, “On the benefits of multilayer optimization and application awareness,” J. Lightwave Technol., vol. 35, no. 6, pp. 1274–1279, Mar 2017.
  • [4] M. Kantor, E. Biernacka, P. Boryło, J. Domżał, P. Jurkiewicz, M. Stypiński, and R. Wójcik, “A survey on multi-layer IP and optical Software-Defined Networks,” Comput. Netw., vol. 162, p. 106844, 2019, doi: 10.1016/j.comnet.2019.06.022.
  • [5] J. Domżał, Z. Duliński, J. Rząsa, P. Gawłowicz, E. Biernacka, and R. Wójcik, “Automatic Hidden Bypasses in Software-Defined Networks,” J. Netw. Syst. Manag., vol. 25, pp. 457–480, 2017, doi: 10.1007/s10922-016-9397-5.
  • [6] P. Boryło, J. Domżał, and R. Wójcik, “Survivable automatic hidden bypasses in Software-Defined Networks,” Comput. Netw., vol. 133, pp. 73–89, 2018, doi: 10.1016/j.comnet.2018.01.022.
  • [7] E. Biernacka, P. Boryło, R. Wójcik, and J. Domżał, “Elastic optical bypasses for traffic bursts,” Comput. Commun., vol. 146, pp. 95–102, 2019, doi: 10.1016/j.comcom.2019.07.017.
  • [8] “Omnet++,” http://www.omnetpp.org.
  • [9] Z. Zhong, J. Li, N. Hua, G.B. Figueiredo, Y. Li, X. Zheng, and B. Mukherjee, “On qos-assured degraded provisioning in service-differentiated multi-layer elastic optical networks,” in 2016 IEEE Global Communications Conference (GLOBE-COM), 2016, pp. 1–5.
  • [10] C. Rožić, M. Savi, C. Matrakidis, D. Klonidis, and D. Siracusa, “A dynamic multi-layer resource allocation and optimization framework in application-centric networks,” J. Lightwave Technol., vol. 36, no. 20, pp. 4908–4914, 2018.
  • [11] Z. Zhong, N. Hua, M. Tornatore, J. Li, Y. Li, X. Zheng, and B. Mukherjee, “Provisioning short-term traffic fluctuations in elastic optical networks,” IEEE/ACM Trans. Netw., vol. 27, no. 4, pp. 1460–1473, 2019.
  • [12] E. Etezadi, H. Beyranvand, and J.A. Salehi, “Latency-aware service provisioning in survivable multilayer ip-over-elastic optical networks to support multi-class of service transmission,” Comput. Commun., vol. 183, pp. 161–170, 2 2022, doi: 10.1016/j.comcom.2021.12.003.
  • [13] B. Kadziolka, M. Skala, R. Wojcik, P. Jurkiewicz, and J. Domzal, “Employing FAMTAR and AHB to Achieve an Optical Resource-Efficient Multilayer IP-Over-EON SDN Network,” IEEE Access, vol. 10, pp. 94 089–94 099, 2022, doi: 10.1109/ACCESS.2022.3204290.
  • [14] C.A. Kyriakopoulos, G.I. Papadimitriou, and P. Nicopolitidis, “Towards energy efficiency in virtual topology design of elastic optical networks,” Int. J. Commun. Syst., vol. 31, no. 13, pp. 1–16, 2018, doi: 10.1002/dac.3727.
  • [15] Q. Zhu, X. Yu, Y. Zhao, A. Nag, and J. Zhang, “Auxiliary-graph-based energy-efficient traffic grooming in ip-over-fixed/flex-grid optical networks,” J. Lightwave Technol., vol. 39, pp. 3011–3024, 5 2021, doi: 10.1109/JLT.2021.3057389.
  • [16] B.C. Chatterjee, N. Sarma, and E. Oki, “Routing and Spectrum Allocation in Elastic Optical Networks: A Tutorial,” IEEE Commun. Surv. Tutor., vol. 17, no. 3, pp. 1776–1800, 2015, doi: 10.1109/COMST.2015.2431731.
  • [17] ITU-T, “Spectral grids for WDM applications: DWDM frequency grid,” no. G.694.1, February 2012.
  • [18] K. Christodoulopoulos, I. Tomkos, and E.A. Varvarigos, “Elastic bandwidth allocation in flexible ofdm-based optical networks,” J. Lightwave Technol., vol. 29, no. 9, pp. 1354–1366, May 2011, doi: 10.1109/JLT.2011.2125777.
  • [19] V.A. Vale, R.C. Almeida, and K.D. Assis, “Network-state-dependent routing and route-dependent spectrum assignment for PRMLSA problem in all-optical elastic networks,” Opt. Switch. Netw., vol. 43, p. 100646, Feb 2022, doi: 10.1016/j.osn.2021.100646.
  • [20] X. Luo, C. Shi, X. Chen, L. Wang, and T. Yang, “Global optimization of all-optical hybrid-casting in inter-datacenter elastic optical networks,” IEEE Access, vol. 6, pp. 36 530–36 543, 2018, doi: 10.1109/ACCESS.2018.2852067.
  • [21] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski, “Sndlib 1.0–survivable network design library,” Networks, vol. 55, no. 3, p. 276–286, May 2010.
  • [22] H. Tode and Y. Hirota, “Routing, spectrum, and core and/or mode assignment on space-division multiplexing optical networks [invited],” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 1, pp. A99–A113, 2017.
  • [23] A. Agrawal, V. Bhatia, and S. Prakash, “Spectrum efficient distance-adaptive paths for fixed and fixed-alternate routing in elastic optical networks,” Opt. Fiber Technol., vol. 40, pp. 36–45, 2018, doi: 10.1016/j.yofte.2017.11.001.
  • [24] R. Goścień and K. Walkowiak, “Comparison of different data center location policies in survivable elastic optical networks,” in 2015 7th International Workshop on Reliable Networks Design and Modeling (RNDM), Oct 2015, pp. 48–55, doi: 10.1109/RNDM.2015.7324308.
  • [25] M. Klinkowski and K. Walkowiak, “An Efficient Optimization Framework for Solving RSSA Problems in Spectrally and Spatially Flexible Optical Networks,” IEEE/ACM Trans. Netw., vol. 27, no. 4, pp. 1474–1486, 2019, doi: 10.1109/tnet.2019.2922761.
  • [26] M. Aibin, K. Walkowiak, and A. Sen, “Software-defined adaptive survivability for elastic optical networks,” Opt. Switch. Netw., vol. 23, pp. 85–96, 2017, doi: 10.1016/j.osn.2016.06.008.
  • [27] F. Shirin Abkenar and A. Ghaffarpour Rahbar, “Study and Analysis of Routing and Spectrum Allocation (RSA) and Routing, Modulation and Spectrum Allocation (RMSA) Algorithms in Elastic Optical Networks (EONs),” Opt. Switch. Netw., vol. 23, pp. 5–39, 2017, doi: 10.1016/j.osn.2016.08.003.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e61d3acc-84d5-4d05-a470-a9e0385f1461
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.