PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Procedure for detoxication of linuron contaminated soil based on ozonation and fluidization process

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Metoda oczyszczania gleby zanieczyszczonej linuronem poprzez ozonowanie w fazie fluidalnej
Języki publikacji
EN
Abstrakty
EN
The linuron contaminated soil was subjected to remediation using ozone as an oxidant. The experiments were performed both in laboratory and pilot plant installations. Kinetics of linuron degradation was determined for both systems. Moreover, main linuron metabolites were identified, and possible degradation pathway was proposed. The soil remediation was found to be successful, which was verified by chemical and biological tests. The half-life time of linuron in the pilot scale installation was no more than 7.5 h. To verify the efficiency of soil detoxification, a toxicity test was performed, which utilized Eisenia foetida earthworm. The test organisms were exposed for 14 days to the linuron contaminated soil prior and after the remediation procedure. It was observed that in the control group and the group of organisms exposed to the ozonated soil, the survivability was 100%, whereas the earthworms exposed to the linuron contaminated soil that was not ozonated did not survive at all.
PL
Zanieczyszczoną linuronem glebę poddano remediacji z użyciem ozonu jako utleniacza. Eksperymenty przeprowadzono zarówno w instalacji laboratoryjnej, jak i instalacji pilotażowej. Dla obu systemów wyznaczono kinetykę degradacji linuronu. Ponadto zidentyfikowano główne produkty rozkładu linuronu i zaproponowano możliwy szlak degradacji. Remediacja gleby okazała się skuteczna, co zweryfikowano testami chemicznymi i biologicznymi. Okres półtrwania linuronu w instalacji w skali pilotażowej nie przekraczał 7,5 godziny. W celu sprawdzenia skuteczności detoksykacji gleby przeprowadzono test toksyczności, w którym wykorzystano dżdżownicę Eisenia foetida. Organizmy testowe były wystawione na działanie gleby skażonej linuronem przez 14 dni przed i po procedurze remediacji. Zaobserwowano, że w grupie kontrolnej i grupie organizmów narażonych na kontakt z glebą poddaną remediacji przeżywalność wyniosła 100%, natomiast dżdżownice narażone na kontakt z glebą skażoną linuronem nie przeżyły.
Rocznik
Strony
48--56
Opis fizyczny
Bibliogr. 29 poz., tab., wykr.
Twórcy
  • University of Rzeszów, Poland
autor
  • Rzeszow Uniwersity of Technology, Poland
  • University of Rzeszów, Poland
  • Rzeszow University of Technology
Bibliografia
  • 1. Abu Ghalwa, N., Hamada, M., Abu Shawish, H.M. & Shubair O. (2016). Electrochemical degradation of linuron in aqueous solution using Pb/PbO2 and C/PbO2 electrodes. Arabian Journal of Chemistry 9, pp. 821–828, DOI: 10.1016/j.arabjc.2011.08.006
  • 2. Antos, P., Józefczyk, R., Kisała, J. & Balawejder, M. (2012). Remediation of imidacloprid contaminated soil – comparison of two different reactors for the ozone treatment. Xenobiotics, Soil, Food and Human Health Interactions, Rzeszów ISBN 978-83-7338-785-0, pp. 147–158
  • 3. Assokeng, T., Noumi, G.B., Adjia, H.Z. & Sieliechi, J.M. (2021). Assessment of the Risk of Contaminating Soil Cultivation Fruits and Vegetables by Linuron Residues in the Market Gardening Zone in Marza in Ngaoundere – Cameroon. Resources and Environment 11(1): pp. 1–8, DOI: 10.5923/j.re.20211101.01
  • 4. Balawejder, M., Antos, P., Czyjit Kuryło, S., Józefczyk, R. & Pieniążek, M. (2014). A novel metod for remediation of DDT contaminated soil. Ozone Science&Engineering, 36, pp. 166–173, DOI: 10.1080/01919512.2013.8 61324
  • 5. Balawejder, M., Antos, P., Józefczyk, R. & Pieniążek, M. (2016a). A method for remediation of soil contaminated with simazine. Archives of Environmental Protection, 42(3), pp. 41–46, DOI: 10.1515/aep-2016-0024
  • 6. Balawejder, M., Józefczyk, R., Antos, P. & Pieniążek, M. (2016b). Pilot-scale Installation for Remediation of DDT-contaminated soil. Ozone: Science & Engineering, 38, pp. 272–278, DOI: 10.1080/01919512.2015.1136556
  • 7. Barchańska, H., Czaplicka, M. & Kyzioł-Komosińska, J. (2020). Interaction of selected pesticides with mineral and organic soil components. Archives of Environmental Protection, 46 (3), pp. 80–91, DOI: 10.24425/aep.2020.134538
  • 8. Boughattas, I., Hattab, S., Boussetta, H., Sappin-Didier, V., Viarengo, A., Banni, M. & Sforzini, S. (2016). Biomarker responses of Eisenia andrei to a polymetallic gradient near a lead mining site in North Tunisia. Environmental Pollution, 218 pp. 530–541, DOI: 10.1016/j.envpol.2016.07.033
  • 9. Buleandra, M., Popa, D.E., David, I.G., Bacalum, E., David, V. & Ciucu, A.A. (2019). Electrochemical behavior study of some selected phenylurea herbicides at activated pencil graphite electrode. Electrooxidation of linuron and monolinuron. Microchemical Journal, 147, pp. 1109–1116, DOI: 10.1016/j.microc.2019.04.042
  • 10. Fenoll, J., Martínez-Menchón, M., Navarro, G., Vela, N. & Navarro, S. (2013). Photocatalytic degradation of substituted phenylurea herbicides in aqueous semiconductor suspensions exposed to solar energy. Chemosphere, 91, pp. 571–578, DOI: 10.1016/j.chemosphere.2012.11.067
  • 11. Hankard, P.K., Svendsen, C., Wright, J., Weinberg, C., Fishwick, S.K., Spurgeon, D.J. & Weeks, J.M. (2004). Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis. Sci. Total Environ., 330, pp. 9–20, DOI: 10.1016/j.scitotenv.2003.08.023
  • 12. Katsumata, H., Kobayashi, T., Kaneco, S., Suzuki, T. & Ohta, K. (2011) Degradation of linuron by ultrasound combined with photo-Fenton treatment. Chemical Engineering Journal, 166, pp. 468–473, DOI: 10.1016/j.cej.2010.10.073
  • 13. Kuo, S.L. & Wu, E.M.-Y. (2021). Remediation Efficiency of the In Situ Vitrification Method at an Unidentified-Waste and Groundwater Treatment Site. Water, 13, 3594, DOI: 10.3390/w13243594
  • 14. Liu, T., Liu, Y., Fang, K., Zhang, X. & Wang, X. (2020). Transcriptome, bioaccumulation and toxicity analyses of earthworms (Eisenia fetida) affected by trifloxystrobin and trifloxystrobin acid. Environmental Pollution, 265, Part B, 115100, DOI: 10.1016/j.envpol.2020.115100
  • 15. Lowe, C.N. & Butt, K.R. (2007). Earthworm culture, maintenance and species selection in chronic ecotoxicological studies: A critical review. European Journal of Soil Biology, 43, pp. 281–288, DOI: 10.1016/j.ejsobi.2007.08.028
  • 16. Lowe, C.N. & Butt, K.R. (2005). Culture techniques for soil dwelling earthworms: a review. Pedobiologia, 49 (5), pp. 401–413, DOI: 10.1016/j.pedobi.2005.04.005
  • 17. Moore, M.N. (1976). Cytochemical demonstration of latency of lysosomal hydrolases in the digestive cells of the common mussel, Mytilus edulis, and changes induced by thermal stress. Cell. Tissue Res. 175, pp. 279–287, DOI: 10.1007/BF00218706
  • 18. Mussatto, S.I. (2016). Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery, ISBN 978-0-12-802323-5, pp. 410–411
  • 19. OECD Guideline For Testing Of Chemicals No. 207: Earthworm, Acute Toxicity Tests (Eisenia fetida/Eisenia Andrei), OECD 1984, DOI: 10.1787/9789264070042-en
  • 20. OECD Guideline For Testing Of Chemicals No. 222: Earthworm Reproduction Test (Eisenia fetida/Eisenia Andrei), OECD 2004 https://www.oecd.org/env/ehs/testing/Draft-Updated-Test-Guildeline-222-Earthworm-reproduction-Test.pdf
  • 21. Quan, X., Zhao, X., Chen, S., Zhao, H., Chen, J. & Zhao, Y. (2005). Enhancement of p,p’-DDT photodegradation on soil surfaces using TiO2 induced by UV-light, Chemosphere, 60, pp. 266–273, DOI: 10.1016/j.chemosphere.2004.11.044
  • 22. Rao, Y.F. & Chu, W. (2010). Degradation of linuron by UV, ozonation, and UV/O3 processes – Effect of anions and reaction mechanism. Journal of Hazardous Materials, 180, pp. 514–523, DOI: 10.1016/j.jhazmat.2010.04.063
  • 23. Rosal, R., Gonzalo, M. S., Rodríguez, A., Perdigón-Melón, J.A. & García-Calvo, E. (2010). Catalytic ozonation of atrazine and linuron on MnOx/Al2O3 and MnOx/SBA-15 in a fixed bed reactor. Chemical Engineering Journal, 165, pp. 806–812, DOI: 10.1016/j.cej.2010.10.020
  • 24. Sforzini, S., Moore, M.N., Boeri, M., Bencivenga, M. & Viarengo, A. (2015). Effects of PAHs and dioxins on the earthworm Eisenia andrei: A multivariate approach for biomarker interpretation. Environmental Pollution, 196 pp. 60–71, DOI: 10.1016/j.envpol.2014.09.015
  • 25. Svendsen, C., Spurgeon, D.J., Hankard, P.K. & Weeks, J.M. (2004). A review of lysosomal membrane stability measured by neutral red retention: is it a workable earthworm biomarker?. Ecotoxicology and Environmental Safety, 57, pp. 20–29, DOI: 10.1016/j.ecoenv.2003.08.009
  • 26. Svendsen, C., Meharg, A.A., Freestone, P. & Weeks, J.M. (1996). Use of an earthworm lysosomal biomarker for the ecological assessment of pollution from an industrial plastics fire. Soil Ecology, 3, pp. 99–107, DOI: 10.1016/0929-1393(95)00085-2
  • 27. Spirhanzlova, P., De Groef, B., Nicholson, F.E., Grommen, S.V.H., Marras, G., Sébillot, A., Demeneix, B.A., Pallud-Mothré, S., Lemkine, G.F., Tindall, A.J. & Du Pasquier, D. (2017). Using short-term bioassays to evaluate the endocrine disrupting capacity of the pesticides linuron and fenoxycarb. Comparative Biochemistry and Physiology, Part C, 200, pp. 52–58, DOI: 10.1016/j.cbpc.2017.06.006
  • 28. Swarcewicz, M., Gregorczyk, A. & Sobczak, J. (2013). Comparison of linuron degradation in the presence of pesticide mixtures in soil under laboratory conditions. Environ Monit Assess, 185, pp. 8109–8114, DOI: 10.1007/s10661-013-3158-7
  • 29. Zhao, S., Wang, Y. & Duo, L. (2021). Biochemical toxicity, lysosomal membrane stability and DNA damage induced by graphene oxide in earthworms. Environmental Pollution, 269, 116225, DOI: 10.1016/j.envpol.2020.116225
Uwagi
Opracowane ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e61b4ba3-a46a-430b-bb89-185a197595bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.