PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Strengthening the Working Surfaces of Gears Through Dynamic Burnishing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Known solutions of devices for crush hardening do not ensure sufficient effectiveness of machining the teeth of a gear working surfaces. Due to the need to increase the load to working machines, and thus the degree of gear effort, while reducing their dimensions (i.e. downsizing), it is necessary to search for, test and implement new solutions for strengthening the gears. The proposed solution of the device, intended for jet burnishing the working surfaces of the gear teeth with an arch tooth line met the increased requirements regarding the effectiveness of strengthening. Effective cooling and lubrication of the processed surface and a significant increase in the dynamic burnishing force enable exceptionally favourable operational properties of gear wheels to be obtained using the discussed device. The opposite direction of the peripheral speed of the machined wheel in relation to the speed of the burnishing stream allows for obtaining the greater depth of surface deformation, generating higher compressive residual stresses in the surface layer. The parameters of the burnishing process with this device can be easily adjusted within wide limits, and the final effect depends on the selection of the diameter and type of the backshot material, its ejection speed, processing time and the number of processing passes.
Wydawca
Rocznik
Tom
Strony
502--508
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
  • Silesian University of Technology Faculty of Mining, Safety Engineering and Industrial Automation Department of Mining Mechanization and Robotisation Akademicka 2 Street, 44-100 Gliwice, Poland
  • Silesian University of Technology Faculty of Mining, Safety Engineering and Industrial Automation Department of Mining Mechanization and Robotisation Akademicka 2 Street, 44-100 Gliwice, Poland
  • Retired researcher at the Silesian University of Technology Faculty of Mining, Safety Engineering and Industrial Automation Department of Mining Mechanization and Robotisation Akademicka 2 Street, 44-100 Gliwice, Poland
Bibliografia
  • [1] Biały W., Czerwińska-Lubszczyk A., Czerwiński S., Gear gears used in machines/mining devices. Support Systems in Production Engineering. Mining – Prospects and Threats. 2019, vol. 8, no. 1, pp. 376-391.
  • [2] Skoć A., Świtoński E., Gears: principles of operation, geo-metric and strength calculations. PWN, Warszawa 2017.
  • [3] Adamecki D., Grzegorzek W., Mikuła J., Mikuła, S., Mecha-nisms of failure of gears in the driving systems of construc-tion machinery and their diagnosis in exploitation condi-tions. KOMTECH Conference, Institute of Mining Technol-ogy KOMAG, Gliwice. 2020, pp. 59-70.
  • [4] Bartelmus W., Mining Machine Diagnostics. Opencast Mining. Silesia Publishing House. Katowice 1998.
  • [5] Capdessus C., Sidahmed M., Lacoume J.L., Cyclostationary processes: Application in gear faults early diagnosis. Me-chanical Systems and Signal Processing. 2000, vol. 14, no. 3, pp. 371-385.
  • [6] Radkowski S., Low energy components of vibroacoustic signal as the basis for diagnosis of defect formation. Ma-chine Dynamics Problems. 1995, vol. 12.
  • [7] Szweda S., Mikuła J., Mikuła S., Magnetic-and-powder Method in Diagnostics of Welded Joints in Powered Roof Supports. IOP Conference Series: Materials Science and En-gineering. 2019, vol. 545, pp. 012015. DOI: 10.1088/1757-899X/545/1/012015.
  • [8] Qin Z., Wu YT. & Lyu SK., A Review of Recent Advances in Design Optimization of Gearbox. Int. J. Precis. Eng. Manuf. 2018, vol. 19, pp. 1753–1762.
  • [9] Delibaş H., Uzay Ç., & Geren N., Advanced Material Selec-tion Technique For High Strength and Lightweight Spur Gear Design. European Mechanical Science. 2017, vol. 1, no. 4, pp. 133-140.
  • [10] Boumediri H., Touati S., Debbah Y. et al., Effect of carbu-rizing time treatment on microstructure and mechanical properties of low alloy gear steels. IOP Publishing. Materi-als Research Express. 2024, vol. 11, pp. 1-10.
  • [11] Bagaiskov Y., Machining quality improvement and noise reduction of vehicle gears. IOP Conf. Ser.: Mater. Sci. Eng. 2020, vol. 918, pp. 012160.
  • [12] Mukherjee S., Kumar V., Sarangi S., Bera T. K. Gearbox Fault Diagnosis using Advanced Computational Intelli-gence. Procedia Computer Science. 2020, vol. 167, pp.1594-1603.
  • [13] Tuszyński W., Gibała M., Kalbarczyk M. et al. Characteris-tics of a new test rig and methodology for cyclic testing of gear tooth bending fatigue strength. Tribologia 2019, vol. 283(1), pp. 57-65. https://doi.org/10.5604/01.3001.0013.1438.
  • [14] Kalbarczyk M., Tuszyński W., Lastra M.A.E. et al. Redukcja tarcia oraz poprawa odporności na zacieranie kół zębatych stożkowych o zębach łukowych poprzez osadzenie powłoki niskotarciowej. Tribologia 2014; vol. 254(2): pp. 67-77.
  • [15] Tuszyński W., Michalczewski R., Szczerek M. et al. A new scuffing shock test method for the determination of the resistance to scuffing of coated gears. Archives of Civil and Mechanical Engineering (ACME) 2012, vol. 12, pp. 436-445.
  • [16] Michalczewski R., Kalbarczyk M., Michalak M. et al. Scuff-ing resistance of coated gears. Tribology: Fundamentals and Advancements 2013, vol. 185, pp. 187-215.
  • [17] Przybylski W., Burnishing processing technology. WNT. Warszawa 1987.
  • [18] Łunarski J., Fatigue strength of machine parts after chosen methods of surface machining. Scientific Journals of Rzeszów University of Technology. Mechanics no. 17, Rzeszów 1988.
  • [19] Mikuła S., Application of shot blasting technology in the production of mining machine components. Scientific Jour-nals of Silesian University of Technology. Mining no. 255, Gliwice 2002.
  • [20] ISO 10825-1:2022, Gears – Wear and damage to gear teeth. Part 1: Nomenclature and characteristics, Ed. 1, 2022.
  • [21] PN-91/M-88506, Reducers and motoreducers for general engineering. Damages of gear tooth. Terminology. Polish Standard, Polish Committee for Standardization 1991.
  • [22] ČSN ISO 10825 (014695), Gears – Wear and damage to gear teeth – Terminology. Czech Standardization Agency, 1997.
  • [23] Moravec V., Machine and plant construction II. Spur gears, theory, calculation, design, manufacture, control. Publis-hing Montanex, 2001, pp.165-174. ISBN 80-7225-051-5.
  • [24] Ding Y., Rieger N.F., Spalling formation mechanism for gears. Wear Vol. 254, Issue 12, 2003, pp. 1307-1317, https://doi.org/10.1016/S0043-1648(03)00126-1
  • [25] Luo Y., Baddour N., Liang M., Dynamical modeling and ex-perimental validation for tooth pitting and spalling in spur gears. Mechanical Systems and Signal Processing Vol. 119, 2019, pp. 155-181, https://doi.org/10.1016/j.ymssp.2018.09.027
  • [26] Niemann G., Winter H., Machine elements: Vol. 2: Getriebe Allgemein, Gearbox fundamentals. Springer-Ver-lag, Spur gears 2013.
  • [27] Ścieszka S., Żołnierz M., Operation of machines, Part I i II. Silesian University of Technology Publishing House, Gliwice 2012.
  • [28] Kumagai K., Naito Y., Kurokawa S., Pitting failure of helical gears induced by trochoidal interference and multidirec-tional, interacting wear. Journal of Advanced Mechanical Design, Systems, and Manufacturing Vol. 14, No. 4, 2020, pp. 1-13, https://doi.org/10.1299/jamdsm.2020jamdsm0060
  • [29] Miltenović Đ., Tica M., Miltenović A., Banić M., Živković S., Mišković Ž., Pitting of tooth flanks of crossed helical gears made of sintered steel. Transactions of Famena 38(4), 2014, pp. 77-88.
  • [30] Manual: Failure analysis gears-shafts-bearings-seals. Failure Analysis, Installation & Maintenance. Rexnord Industries USA, 108-010, 1978, pp. 1-20. https://www.rexnord.com/contentitems/techlibrary/documents/108-010_manual
  • [31] Starzhinskii V.E., Soliterman Y.L., Goman A.M. et al., Forms of damage to gear wheels: Typology and recommenda-tions on prevention. J. Frict. Wear 29, 2008, pp. 340-353, https://doi.org/10.3103/S1068366608050048
  • [32] Dobrzański L.A., Basis of the shaping of surface and prop-erties of metal materials. Publishing House of Silesian Uni-versity of Technology. Gliwice 2007.
  • [33] Schulze V., Bleicher F., Groche P., Guo Y.B., Pyun Y.S., Sur-face modification by machine hammer peening and
  • burnishing. CIRP Annals Manufacturing Technology. 2016, vol. 65, no. 2, pp. 809-832.
  • [34] Maximov J.T., Duncheva G.V., Anchev A.P. et al., Slide bur-nishing-review and prospects. The International Journal of Advanced Manufacturing Technology. 2019, vol. 104, pp. 785-801.
  • [35] Raza A., Kumar S., A critical review of tool design in bur-nishing process. Tribology International. 2022, vol. 174, pp. 107717.
  • [36] Świetlicki A., Szala M., Walczak M., Effects of Shot Peening and Cavitation Peening on Properties of Surface Layer of Metallic Materials – A Short Review. Materials. 2022, vol. 15, 2476, pp. 1-26.
  • [37] Zaleski K., Dynamic burnishing technology. Publishing House of Lublin University of Technology. Lublin 2018.
  • [38] Nakonieczny A., Dynamic surface plastic processing – shot peening. Institute of Precision Mechanics. Warszawa 2002.
  • [39] Kolman R., Mechanical reinforcement of machine parts surfaces. WNT. Warszawa 1965.
  • [40] Szulc S., Stefko A., Surface treatment of machine parts. WNT. Warszawa 1976.
  • [41] Korzyński, M., Device for dynamic burnishing of external surfaces of cylindrical objects. Patent 139508.
  • [42] Łunarski J., Wójcik A., Zielecki W., A device for strengthen-ing metal objects by pneumatic shot peening. Patent 150864.
  • [43] Mikuła J., Grzegorzek W., Adamecki D., Mikuła S., Skoć A., Device for strengthening the tooth working surfaces of gears with arcuate tooth trace. Patent P.429855. Pub-lished 04.12.2023.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6179419-0055-4aea-8399-d244c9c4a2b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.