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Abstract   

In the paper there is presented a discrete-continuous model of the Split Hopkinson Pressure Bar (SHPB) for 
numerical simulations of a dynamic behaviour of material specimens under high strain-rates. For this purpose 
several material theories describing visco-elasto-plastic properties of the tested specimens can be applied. 
Using this model impact-type dynamic responses are sought by means of the longitudinal elastic wave analyti-
cal solution of the d’Alembert type. The proposed model enables us theoretical strength investigations for 
various elasto-plastic materials under great deformation velocities as well as structural parameter determination 
of the real SHPB designed to play a role of the laboratory test-rig.  
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1. Introduction  

High strain rate experimental tests are important in mechanical property analysis of 
materials under strongly dynamic conditions. The Split Hopkinson Pressure Bar (SHPB) 
has been widely used to investigate dynamic behaviour of various materials within the 
strain rate range of 102 to 104 s-1 [1-4]. In 1872 John Hopkinson investigated a stress 
wave propagation in a wire [1] which was the starting point for his son Bertram, who 
developed a measurement method for the movement recording of a cylinder during 
strongly dynamic conditions [2]. In 1948, Kolsky used two elastic bars instead of one 
with the specimen placed between them [3]. Since that date, this device has been known 
as the SHPB. Such experimental technique can be applied in many configurations, for 
example in compression, tension, torsion and shear. According to the one-dimensional 
elastic wave propagation theory, the “safe” maximum impact velocity is directly related 
to the elastic limit of the incident bar. Such condition limits the maximum strain rate in 
the test. As it was mentioned above, many problems appear using the SHPB technique. 
In order to provide better understanding of this technique, in this paper a discrete-
continuous, semi-analytical model of the SHPB with an elasto-plastic material specimen 
has been developed as an alternative to the commonly applied, time-consuming, non-
linear finite element models with huge numbers of degrees of freedom.  
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2. Continuous modelling and wave solution for the Split Hopkinson Pressure Bar 

Since the longitudinal elastic wave propagation process is going to be investigated as a 
measurement tool for material specimens under high strain rates, in the proposed model 
the incident and transmitting bar of the SHPB are represented by continuous and homo-
geneous elastic cylindrical elements of mutually identical circular cross-sections and 
lengths l1 and l2, respectively. The transmitting bar is visco-elastically fixed to a rigid 
wall by the use of the mass-less spring of stiffness k0 and damping coefficient c0. The 
material specimen of mass 2m, the length of which is much smaller than these of the 
incident and transmitting bar, can be substituted by two rigid bodies of identical masses 
m connected with each other by means of the mass-less, non-linear spring with response 
dependent visco-elastic characteristics c(∆ů(t)) and k(∆u(t)) describing visco-elasto-
plastic properties of the investigated material. The wafer has usually a cylindrical shape 
with length l0 << l1, l2 and cross-sectional stiffness EA equal to these of the incident and 
transmitting bar. Despite of its natural continuous structure, in order to simulate the 
impact process, the wafer can be regarded as a rigid body of mass m0 impacting the inci-
dent bar with initial velocity v0 using an intervention of the mass-less spring. Stiffness ke 
of this spring has been determined assuming that the incident wave excited due to the 
impact has a length corresponding to the double-period of the longitudinal elastic wave 
propagation in the wafer. Thus, ke = EAπ2/l0. According to the above assumptions, the 
proposed discrete-continuous model of the SHPB has a structure demonstrated in Fig. 1.  
 

 
Figure 1. Discrete-continuous model of the SHPB 

Motion of cross-sections of the continuous elements representing the incident and 
transmitting bar is governed by the following homogeneous partial differential equations  
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where E is Young’s modulus, ρ denotes the material density and ui(x,t) are the longitudi-
nal displacements of bar cross-sections, x is the spatial co-ordinate and t denotes time. 
Equations of motion (1) are solved with the following boundary conditions describing 
the support of the SHPB by the rigid wall, dynamic interaction of the elasto-plastic mate-
rial specimen as well as an impact-type excitation by the wafer:  
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where A denotes the area of the bar cross-section and u0(t) is the generalized co-ordinate 
describing motion of the wafer mass center.  

A dynamic response of the SHPB model excited by a wafer impact is sought using 
the d’Alembert wave solutions of motion equations (1) in the similar form, as in [5]: 

 ( ) ( ) .2,1,0)0(0)0(),( =−+−++−−= iixxittaigixxittaiftxiu  (3) 

The functions fi and gi represent longitudinal waves induced by the excitation im-
pulse due to the wafer impact, where the function fi represents a longitudinal wave prop-
agating in the i-th continuous macro-element along the x-axis positive sense, Fig. 1; 
however, the function gi represents a longitudinal wave propagating along the x-axis 
negative sense and a denotes the wave propagation velocity. According to the one-
dimensional wave propagation theory, it is taken into account in (3) that the first pertur-
bation in the i-th macro-element occurs in the cross-section of the co-ordinate x0i after 
the finite time delay t0i. Furthermore, it is assumed that the functions fi and gi are contin-
uous and are null for negative arguments, i.e. before arriving the first perturbation.  

Since solutions (3) identically satisfy motion equation (1), actual values of the wave 
functions, fi and gi are determined by the boundary conditions of the problem. Thus, by 
substituting the wave solutions (3) into the boundary conditions (2), denoting the largest 
argument in each equation by z, and by rearranging these equations in such a way that 
their right-hand sides are always known, in the considered case of the bars with a con-
stant cross-sections we obtain the following system of ordinary differential equations of 
the second order with a “retarded” argument for the functions fi and gi, i=1,2:  

( ) ( ) ),22(20)22(20)(20)(20 λλ −′−−′′−=′+′′+ zfKzfDRzgKzgDR  

 [ ]
[ ] ,

)1(1)(2)1(1)(2)(2

)1(1)(2)(2)1(1)1(1

)(2

)1(1
)(2

)1(1
)(2

)1(1
0

0













−−−−′+′+′′−

−−+′+−′+−′′−
=

=
+

⋅
−

−
+

′

+′

−

−
+

′′

+′′




















































































λλ
λλλ

λλλ

zfzgKzfCzgrzgM

zfzgKzgCzfrzfM

zf

zg

KK

KK

zf

zg

pC

Cp

zf

zg

M

M

 (4) 



308 

 ,
)(

1
)(

1

)(
1

)(
1

)(0
)(1

)(0
0

00

)(1

)(0
00

0
0












−′

=
−

−
+

′

′
+

′′

′′































































































zg
e

KzgR

zg
e

K

zf

zu

e
K

e
K

e
K

e
K

zf

zu

Rzf

zuM
 

where: 

  

),(0)(0,,0
0,

2

2

,
2

2))((
))((

,2,1,,
))((

))((,0
0,

2

2
0

0,
2

tuzu
sm

m
M

sm

m
M

sma

slek

eK

sma

sltuk
zuK

i
sl
il

i
sam

sltuc
zuC

sam
sld

D

sma

slk
K

sma

sEAl
R

≡===
∆

=∆

==
∆

=∆=== λ
&

&

   

p=R+C, r=R-C  and ls [m],  ms [kg] are the reference distance and mass, respectively.  
The above equations have been solved numerically by means of the Newmark meth-

od using the appropriately small direct integration step in order to obtain a sufficient 
accuracy of results of simulation of the impact-type dynamic process. The right-hand 
sides of the equations with a shifted argument, which are known after each integration 
step, similarly as in [5], enable us their very efficient solving one after another, i.e. in the 
sequence defined here by (4). In the considered case, it has been assumed that when the 
impact process is over, i.e. when the elastic strain in the incident bar cross-section x=0 
goes back to zero value, the quantities m0 and ke in (2) and (4) will become null during 
simulation.  

3. Computational example 

An object of consideration is the discrete-continuous model of the real laboratory test rig 
in the form of a classical SHPB. Here, the diameters of the incident and transmitting 
steel bar as well as of the wafer are equal to 0.02 m. The incident bar length l1 is equal to 
1.05 m and the length of the transmitting bar l2=1.07 m. By means of the presented 
SHPB model three cylindrical specimens of diameter 0.01 m and length 0.01 m each and 
made of 34GS steel, M1E copper and 7075 aluminium alloy have been tested. In all 
cases the SHPB was impacted by the wafer of mass m0=0.61 kg with an initial velocity 
50 m/s. The characteristics c(∆ů(t)) and k(∆u(t)) for all specimens mentioned above have 
been properly identified using the simplified Burgers material model, [6], which for the 
force equilibrium formulation in (2) can be reduced to the Voigt material model. This 
approach seems to be very convenient at the introductory stage of this problem investi-
gation, where a demonstration of system dynamic responses in the form of longitudinal 
elastic wave propagation due to wafer impact is the main goal of the presented consider-
ations. Nevertheless, the functions c(∆ů(t)) and k(∆u(t)) in (2), (4) can be regarded here 
as properly identified constants or response dependent variables, [7].  

In Fig. 2 there are shown plots of the system dynamic response in the form of time-
histories of the incident bar impacted free end velocity (Fig. 2a), specimen dynamic 
strain (Fig. 2b) and of the specimen strain rate (Fig. 2c). In all figures the grey lines 
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correspond to the steel specimen, the solid black lines to the copper specimen and the 
dashed black lines correspond to the aluminium alloy specimen. As a reference, by the 
dotted line in Fig. 2a there is denoted the time history of the wafer velocity which natu-
rally tends to zero, when the impact process is over. Here, according to [4], the specimen 
strain and strain rate are respectively defined as:  

 ),(1)(),(/)()()),((ln)( tptttptstts εψψεεψε −==−= &&   

where εp=(f1(at-l1)+g1(at+l1) - f2(at) - g2(at))/lp and lp denotes the initial specimen length. 

a)  

b)  

c)  
time [s] 

Figure 2. Dynamic response of the SHPB due to the wafer impact 

In Fig. 2a there is shown a rapid increase followed by the gradual decrease of the in-
cident bar free end velocity and then there are observed three subsequent velocity per-
turbations caused by successive longitudinal wave reflections upon each time interval 
(l1+ l2)/a ≅ 0.0004 s. However, the plots in Figs. 2b and 2c are characterized by three 
significant perturbations, where the first ones are excited by the incident waves transmit-
ted by the specimen after l1/a ≅ 0.0002 s and the two next perturbations are induced by 
the successive reflected waves of the strain and strain rate, respectively. It is to remark 
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that the greatest perturbations resulting from the dynamic response of the assumed SHPB 
model have been obtained for the aluminium specimen which is characterized by the 
smallest values of functions k and c in (2) and (4). Here, the maximum strain reaches 
0.08 and the greatest strain rate is close to 5000 1/s. The steel specimen, however, is the 
hardest one and thus, it experiences the smallest extreme values of velocity, strain and 
strain rate in comparison to the analogous extremes obtained for the copper specimen, 
see Fig. 2.  

4. Conclusions  

In the paper there was investigated a longitudinal elastic wave propagation process in the 
cylindrical homogeneous rods representing the incident and transmitting bar in the dis-
crete-continuous model of the SHPB. For this purpose, an analytical wave solution of the 
d’Alembert type has been applied in order to simulate system dynamic responses ob-
tained for various metallic specimens. Although the specimen material models assumed 
here require essential improvements in the next steps of research in this field, the ob-
tained results of computations have indicated reasonable values of the commonly ex-
pected maximal strains and strain rates observed during analogous experimental meas-
urements. According to the above, the proposed model of the SHPB, apart of theoretical 
investigations of material elasto-plastic properties, can be successfully used for design-
ing of test rigs in the form of Hopkinson bars.  
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