PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of bearing capacity of H shaped skirted footings on sand using soft computing techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The present study aims to apply soft computing techniques, Artificial Neural Network (ANN) and M5P model tree, to predict the ultimate bearing capacity of the H plan shaped skirted footing on the sand Design/methodology/approach: A total of 162 laboratory test data for the regular plan shaped (square, circular, rectangular, and strip (up to L/B = 2.5) skirted footing were collected from the literature to develop the soft computing-based models. These models were later modified for the H Plan shaped skirted footing with the introduction of the multiplication factor. The input variables chosen for the regular plan shaped footings were skirt depth to width of the footing ratio (Ds/B), friction angle of the sand (o), the ratio of the interface friction angle-to-friction angle of sand (5/o), and length-to-width (L/B) ratio of the footing. The output is the bearing capacity ratio (BCR, a ratio of the bearing capacity of the skirted footing to the bearing capacity of un-skirted footing). Findings: Sensitivity analysis was carried out to see the impact of the individual variable on the BCR). The sensitivity results reveal that the skirt depth to width of the footing ratio is the primary variable affecting the BCR. Finally, the performance of the developed soft computing models was assessed using six statistical parameters. The results from the statistical parameters reveal that model developed using ANN was performing superior to the one prepared using M5P model tree technique for the prediction of the ultimate bearing capacity of H plan shaped skirted footing on sand. Research limitations/implications: The model equations are developed with experimental laboratory data. Hence, these equations need further improvement by using field data. However, until now there no field data have been available to include in the present data set. Practical implications: These proposed model equations can be used to predict the bearing capacity of the H-shaped footing with the help of Ds/B, o, S/o and L/B without performing the laboratory experiments. Originality/value: There is no such model equation that was developed so far for the H-shaped skirted footings. Hence, an attempt was made in this article to predict the bearing capacity of the H-shaped footing by using available experimental data with the help of soft computing techniques.
Rocznik
Strony
62--74
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
  • Department of Civil Engineering, National Institute of Technology, Hamirpur, India
autor
  • Department of Civil Engineering, Indian Institute of Technology, Dhanbad, India
autor
  • Department of Civil Engineering, National Institute of Technology, Hamirpur, India
Bibliografia
  • [1] M.Y. Al-Aghbari, Y.E.A. Mohamedzein, Model testing of strip footings with structural skirts, Proceedings of the Institution of Civil Engineers - Ground Improvement 8/4 (2004) 171-177. DOI: https7/doi.org/10J.1680/grim.20048A.171.
  • [2] M.Y. Al-Aghbari, Y.E.A. Mohamedzein, Improving the performance of circular foundations using structural skirts, Proceedings of the Institution of Civil Engineers - Ground Improvement 6/3 (2006) 125-132. DOI: https://doi.org/10.1680/grim.2006.10.3.125
  • [3] M.Y. Al-Aghbari, R.K. Dutta, Performance of square footing with structural skirt resting on sand, Geomechanics and Geoengineering 3/4 (2008) 271-277. DOI: https://doi.org/10.1080/17486020802509393
  • [4] R.N. Behera, C.R. Patra, Ultimate bearing capacity prediction of eccentrically inclined loaded strip footings, Geotechnical and Geological Engineering 36 (2018) 3029-3080. DOI: https://doi.org/10.1007/s10706-018-0521-z
  • [5] R.N. Behera, C.R. Patra, N. Sivakugan, B.M. Das, Prediction of ultimate bearing capacity of eccentrically inclined loaded strip footing by ANN, part I, International Journal of Geotechnical Engineering 7/1 (2013) 36-44. DOI: https://doi.org/10.1179/1938636212Z.00000000012
  • [6] R.N. Behera, C.R. Patra, N. Sivakugan, B.M. Das, Prediction of ultimate bearing capacity of eccentrically inclined loaded strip footing by ANN, part II, International Journal of Geotechnical Engineering 7/2 (2013) 165-172. DOI: https://doi.org/10.1179/1938636213Z.00000000019
  • [7] W.Y. Byeon, S.R. Lee, Y.S. Kim, Application of flat DMT and ANN to Korean soft clay deposits for reliable estimation of undrained shear strength, International Journal of Offshore and Polar Engineering 16/10 (2006) 73-80.
  • [8] N. Caglar, H. Arman, The applicability of neural networks in the determination of soil profiles, Bulletin of Engineering Geology and the Environment 66/3 (2007) 295-301. DOI: https://doi.org/10.1007/s10064- 006-0075-9
  • [9] B. Dawarci, M. Ornek, Y. Turedi, Analysis of multi- edge footings rested on loose and dense sand, Periodica Polytechnica Civil Engineering 58/4 (2014) 355-370. DOI: https://doi.org/10.3311/PPci.2101
  • [10] R.K. Dutta, K. Dutta, S. Jeevanandham, Prediction of deviator stress of sand reinforced with waste plastic strips using neural network, International Journal of Geosynthetics and Ground Engineering 1/2 (2015) 1-12. DOI: https://doi.org/10.1007/s40891-015-0013-7
  • [11] H.T. Eid, O.A. Alansari, A.M. Odeh, M.N. Nasr, H.A. Sadek, Comparative study on the behavior of square foundations resting on confined sand, Canadian Geotechnical Journal 46/4 (2009) 438-453. DOI: https://doi.org/10.1139/T08-134
  • [12] Y. Erzin, Artificial neural networks approach for swell pressure versus soil suction behavior, Canadian Geotechnical Journal 44/10 (2007) 1215-1223. DOI: https://doi.org/10.1139/T07-052
  • [13] G.D. Garson, Interpreting neural-network connection weights, AI Expert 6/4 (1991) 46-51.
  • [14] T. Gnananandarao, V.N. Khatri, R.K. Dutta, Performance of multi-edge skirted footings resting on sand, Indian Geotech Journal 48/3 (2018) 510-519. DOI: https://doi.org/10.1007/s40098-017-0270-6
  • [15] T. Gnananandarao, R.K. Dutta, V.N. Khatri, Application of artificial neural network to predict the settlement of shallow foundations on cohesionless soils, in: I.V. Anirudhan, V.B. Maji (eds.), Geotechnical Applications, IGC 2016 Volume 4, Lecture Notes in Civil Engineering Series, vol. 13, Springer, Singapore, 2019, 51-58. DOI: https://doi.org/10.1007/978-981-13-0368-5 6
  • [16] A.T.C. Goh, Seismic liquefaction potential assessed by neural network, Journal of Geotechnical and Geoenvironmental Engineering 120/9 (1994) 1467-1480. DOI: https://doi.org/10.1061/(ASCE)0733-9410(1994)120:9(1467)
  • [17] A.T.C. Goh, F.H. Kulhawy, C.G. Chua, Bayesian neural network analysis of undrained side resistance of drilled shafts, Journal of Geotechnical and Geoenvironmental Engineering 131/1 (2005) 84-93. DOI: https://doi.org/10.1061/(ASCE) 1090-0241(2005)131:1(84)
  • [18] V.N. Khatri, S.P. Debbarma, R.K. Dutta, B. Mohanty, Pressure-settlement behavior of square and rectangular skirted footings resting on sand, Geomechanics and Engineering 12/4 (2017) 689-705. DOI: https://doi.org/10.12989/gae.2017.12.4.689
  • [19] M.R. Mahmood, M.Y. Fattah, A. Khalaf, Experimental study on bearing capacity of skirted foundations on dry gypseous soil, International Journal of Civil Engineering and Technology 9/10 (2018) 1910-1922.
  • [20] E. Momeni, D.J. Armaghani, S.A. Fatemi, R .Nazir, Prediction of bearing capacity of thin-walled foundation: a simulation approach, Engineering with Computers 34/2 (2018) 319-327. DOI: https://doi.org/10.1007/s00366-017-0542-x
  • [21] W.S. Mcculloch, W. Pitts, A logical calculus of ideas imminent in nervous activity, Bulletin of Mathematical Biophysics 5 (1943) 115-133. DOI: https://doi.org/10.1007/BF02478259
  • [22] J.D. Olden, M.K. Joy, R.G. Death, An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data, Ecological Modelling 178/3-4 (2004) 389-397.
  • [23] M. Omar, K. Hamad, M.A.I. Suwaidi, A. Shanableh, Developing artificial neural network models to predict allowable bearing capacity and elastic settlement of shallow foundation in Sharjah, United Arab Emirates, Arabian Journal of Geosciences 11/16 (2018) 464. DOI: https://doi.org/10.1007/s12517-018-3828-4 DOI: https://doi.org/10.1016/j.ecolmodel.2004.03.013
  • [24] H.I. Park, Development of neural network model to estimate the permeability coefficient of soils, Marine Georesources and Geotechnology 29/4 (2011) 267-278. DOI: https://doi.org/10.1080/1064119X.2011.554963
  • [25] J.R. Quinlan, Learning with continuous classes, Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, Hobart, Australia, 1992, 343-348.
  • [26] R. Sahu, C.R. Patra, N. Sivakugan, B.M. Das, Use of ANN and neuro fuzzy model to predict bearing capacity factor of strip footing resting on reinforced sand and subjected to inclined loading, International Journal of Geosynthetics and Ground Engineering 3 (2017) 29. DOI: https://doi.org/10.1007/s40891-017- 0102-x
  • [27] R. Sahu, C.R. Patra, N. Sivakugan, B.M. Das, Bearing capacity prediction of inclined loaded strip footing on reinforced sand by ANN, in: S. Shukla, E. Guler (eds), Advances in Reinforced Soil Structures, GeoMEast 2017, Sustainable Civil Infrastructures, Springer, Cham, 2017, 97-109. DOI: https://doi.org/10.1007/978-3-319-63570-5 9
  • [28] R. Sahu, C.R. Patra, K. Sobhan, B.M. Das, Ultimate bearing capacity prediction of eccentrically loaded rectangular foundation on reinforced sand by ANN, in: M. Meguid, E. Guler, J. Giroud (eds), Advances in Geosynthetics Engineering, GeoMEast 2018, Sustainable Civil Infrastructures, Springer, Cham, 2019, 45-58. DOI: https://doi.org/10.1007/978-3-030- 01944-0 5
  • [29] N.M. Saleh, A.E. Alsaied, A.M. Elleboudy, Performance of skirted strip footing subjected to eccentric inclined load, Electronic Journal of Geotechnical Engineering 13 (2008) 11-13.
  • [30] P. Samui, B. Kumar, Artificial neural network prediction of stability numbers for two-layered slopes with associated flow rule, The Electronic Journal of Geotechnical Engineering (2006) 1-42.
  • [31] S.K. Sasmal, R.N. Behera, Prediction of combined static and cyclic load induced settlement of shallow strip footing on granular soil using artificial neural network, International Journal of Geotechnical Engineering (2018) 1-11. DOI: https://doi.org/10.1080/19386362.2018.1557384
  • [32] P. Sihag, F. Esmaeilbeiki, B. Singh, I. Ebtehaj, H. Bonakdari, Modeling unsaturated hydraulic conductivity by hybrid soft computing techniques, Soft Computing 23 (2019) 12897-12910. DOI: https://doi.org/10.1007/s00500-019-03847-1
  • [33] B. Singh, P. Sihag, A. Tomar, A. Sehgad, Estimation of compressive strength of high-strength concrete by random forest and M5P model tree approaches, Journal of Materials and Engineering Structures 6 (2019) 583-592.
  • [34] P. Sihag, M. Kumar, B. Singh, Assessment of infiltration models developed using soft computing techniques, Geology, Ecology, and Landscapes (2020) 1-11. DOI: https://doi.org/10.1080/24749508.2020.1720475
  • [35] A. Sepahvand, B. Singh, P. Sihag, A.N. Samani, H. Ahmadi, S.F. Nia, Assessment of the various soft computing techniques to predict sodium absorption ratio (SAR), ISH Journal of Hydraulic Engineering (2019) 1-12. DOI: https://doi.org/10.1080/09715010.2019.1595185
  • [36] B. Singh, P. Sihag, K. Singh, Comparison of infiltration models in NIT Kurukshetra campus, Applied Water Science 8 (2018) 63. DOI: https://doi.org/10.1007/s13201-018-0708-8
  • [37] B. Singh, K. Singh, R. Kumar, P. Sihag, Future prediction and trend analysis of temperature of Haryana, Journal of Indian Water Resources Society 38/2 (2018) 24-27.
  • [38] K. Singh, Dharmendra, Power density analysis by using soft computing techniques for microbial fuel cell, Journal of Environmental Treatment Techniques (2019) 1068-1073.
  • [39] B. Singh, P. Sihag, K. Singh, Modelling of impact of water quality on infltration rate of soil by random forest regression, Modeling Earth Systems and Environment 3 (2017) 999-1004. DOI: https://doi.org/10.1007/s40808-017-0347-3
  • [40] M. Kumar, N.K. Tiwari, S. Ranjan, Soft computing based predictive modelling of oxygen transfer performance of plunging hollow jets, ISH Journal of Hydraulic Engineering (2020) 1-11. DOI: https://doi.org/10.1080/09715010.2020.1752831
  • [41] M. Kumar, N.K. Tiwari, S. Ranjan, Kernel function based regression approaches for estimating the oxygen transfer performance of plunging hollow jet aerator, Journal of Achievements in Materials and Manufacturing Engineering 95/2 (2019) 74-84. DOI: https://doi.org/10.5604/01.3001.0013.7917
  • [42] M.A. Shahin, M.B. Jaksa, H.R. Maier, Artificial neural network-based settlement prediction formula for shallow foundations on granular soils, Australian Geomechanics: Journal and News of the Australian Geomechanics Society 37/4 (2002) 45-52.
  • [43] M.A. Shahin, M.B. Jaksa, H.R. Maier, Artificial neural network applications in geotechnical engineering, Australian Geomechanics 36/1 (2011) 49-62.
  • [44] B. Singh, P. Sihag, K. Singh, S. Kumar, Estimation of trapping efficiency of a vortex tube silt ejector, Interna¬tional Journal of River Basin Management (2018). DOI: https://doi.org/10.1080/15715124.2018.1476367
  • [45] A. Soleimanbeigi, N. Hataf, Predicting ultimate bearing capacity of shallow foundations on reinforced cohesionless soils using artificial neural networks, Geosynthetics International 12/6 (2005) 321-332. DOI: https://doi.org/10.1680/gein.2005.12.6.321
  • [46] E. Uncuoglu, M. Laman, A. Saglamer, H.B. Kara, Prediction of lateral effective stresses in sand using artificial neural network, Soils and Foundations 48/2 (2008) 141-153. DOI: https://doi.org/10.3208/sandf.48.141
  • [47] A.Z.E. Wakil, Bearing capacity of skirt circular footing on sand, Alexandria Engineering Journal 52/3 (2013) 359-364. DOI: https://doi.Org/1a1016/i.aei.2013.01.007.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6152529-54bc-4485-b0ce-bdd0a6049a70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.