PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of the Detonation Pressure of Co-crystal Explosives through a Novel, Simple and Reliable Model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The detonation properties of energetic co-crystals have a substantial role in the design of new co-crystals and it is necessary to know about them. In this study, a linear relationship is proposed between the detonation pressure of energetic co-crystals and their molecular structures via a quantitative structure property relationship (QSPR) method. This model assumes that the detonation pressure of an energetic co-crystal is a function of nN, Mw, nC/nH and nO/nH. The new model was obtained based on the calculated detonation pressures of 39 co-crystals as a training set. The R2 or determination coefficient of the acquired model was 0.9409. This novel correlation provided a proper assessment for a further 12 energetic co-crystals as a test set. Additionally, the root mean square and average absolute deviation of this newly presented correlation were found to be 2.249 and 1.716 GPa, respectively. As a consequence, the proposed correlation can also be utilized to design new energetic co-crystals.
Rocznik
Strony
492--505
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Faculty of Chemistry and Chemical Engineering, Malek-ashtar University of Technology, Tehran, Iran
  • Faculty of Chemistry and Chemical Engineering, Malek-ashtar University of Technology, Tehran, Iran
  • Faculty of Chemistry and Chemical Engineering, Malek-ashtar University of Technology, Tehran, Iran
Bibliografia
  • [1] Akeröy, C.B.; Chopade, P.D.; Taylor, C.R. Cocrystals: Synthesis, Structure, and Applications. Supramol. Chem. 2012, DOI: 10.1002/9780470661345.smc113.
  • [2] Day, G.M. Evaluating the Energetic Driving Force for Cocrystal Formation. Cryst. Growth Des. 2018, 18(2): 892-904.
  • [3] Bond, A.D. What is a Co-crystal? Cryst. Eng. Comm. 2007, 9(9): 833-834.
  • [4] Badgujar, D.M.; Talawar, M.B.; Asthana, S.N.; Mahulikar, P.P. Advances in Science and Technology of Modern Energetic Materials: an Overview. J. Hazard. Mater. 2008, 151(2-3): 289-305.
  • [5] Zeman, S.; Jungová, M. Sensitivity and Performance of Energetic Materials. Propellants Explos. Pyrotech. 2016, 41(3): 426-451.
  • [6] Tappan, B.; Brill, T. Thermal Decomposition of Energetic Materials 86. Cryogel Synthesis of Nanocrystalline CL‐20 Coated with Cured Nitrocellulose. Propellants Explos. Pyrotech. 2003, 28: 223-230.
  • [7] Yang, Z.; Li, H.; Huang, H.; Zhou, X.; Li, J.; Nie, F. Preparation and Performance of a HNIW/TNT Cocrystal Explosive. Propellants Explos. Pyrotech. 2013, 38(4):495-501.
  • [8] Bennion, J.C.; McBain, A.; Son, S.F.; Matzger, A.J. Design and Synthesis of a Series of Nitrogen-rich Energetic Cocrystals of 5,5′-Dinitro-2H,2H′-3,3′-bi-1,2,4-triazole (DNBT). Cryst Growth Des. 2015, 15(5): 2545-2549.
  • [9] Lin, H.; Chen, J.F.; Zhu, Sh.G.; Li, H.Zh.; Huang, Y. Synthesis, Characterization, Detonation Performance, and DFT Calculation of HMX/PNO Cocrystal. J. Energ. Mater. 2017, 35(1): 95-108.
  • [10] Lin, H.; Chen, J.F.; Zhu, S.G.; Li, H.Z.; Huang, Y. Synthesis, Characterization, Detonation Performance, and DFT Calculation of HMX/PNO Cocrystal Explosive. J. Energ. Mater. 2016, 35(1): 95-108.
  • [11] An, C.; Li, H.; Ye, B.; Xu, C.; Wang, J. Preparation and Characterization of Ultrafine HMX/TATB Explosive Co-crystals. J. Energ. Mater. 2017, 14(4): 876-887.
  • [12] Liu, N.; Duan, B.; Lu, X.; Mo, H.; Xu, M.; Zhang, Q.; Wang, B. Preparation of CL-20/DNDAP Cocrystals by a Rapid and Continuous Spray Drying Method: an Alternative to Cocrystal Formation. Cryst Eng Comm. 2018, 20(14): 2060-2067.
  • [13] Lin, H.; Zhu, Sh.; Zhang, L.; Peng, X.; Li, H. Synthesis and First Principles Investigation of HMX/NMP Cocrystal Explosive. J. Energ. Mater. 2013, 31(4):261-272.
  • [14] Yang, Z.; Li, H.; Zhou, X.; Zhang, C.; Huang, H.; Li, J.; Nie, F. Characterization and Properties of a Novel Energetic-Energetic Cocrystal Explosive Composed of HNIW and BTF. Cryst. Growth Des. 2012, 12(11): 5155-5158.
  • [15] Xu, H.; Duan, X.; Li, H.; Pei, C. A Novel High-energetic and Good-sensitive Cocrystal Composed of CL-20 and TATB by a Rapid Solvent/Non-solvent Method. RSC Adv. 2015, 5(116): 95764-95770.
  • [16] Bolton, O.; Simke, L.R.; Pagoria, P.F.; Matzger, A.J. High Power Explosive with Good Sensitivity: A 2:1 Cocrystal of CL-20:HMX. Cryst. Growth Des. 2012, 12(9):4311-4314.
  • [17] Kamlet, M.J.; Jacobs, S.J. Chemistry of Detonations. I. A Simple Method for Calculating Detonation Properties of C-H-N-O Explosives. J. Chem. Phys. 1968, 48(1): 23-35.
  • [18] Fayet, G.; Rotureau, P. How to Use QSPR Models to Help the Design and the Safety of Energetic Materials. In: Energetic Materials. From Cradle to Grave. (Shukla, M.K.; Boddu, V.M.; Steevens, J.A.; Damavarapu, R.; Leszczyński, J., Eds.) Springer, Cham, 2017, pp. 67-90; ISBN 978-3-319-59206-0.
  • [19] Keshavarz, M.H.; Zamani, A.; Shafiee, M. Predicting Detonation Performance of CHNOFCl and Aluminized Explosives. Propellants Explos. Pyrotech. 2014, 39:749-754.
  • [20] Keshavarz, M.H.; Pouretedal, H.R. Thermochemical and Detonation Properties of 2,4,6-Tris (3,5-diamino-2,4,6-trinitrophenylamino)-1,3,5-triazine as Thermally Stable Explosive. Thermochim. Acta, 2004, 414: 203-208.
  • [21] Fathollahi, M.; Sajadi, H. Prediction of Density of Energetic Cocrystals Based on QSPR Modeling Using Artificial Neural Network. J. Struct. Chem. 2018, 29(4):1119-1128.
  • [22] Fathollahi, M.; Sajadi, H. QSPR Modeling of Decomposition Temperature of Energetic Cocrystals Using Artificial Neural Network. J. Therm. Anal. Calorim. 2018, 133: 1663-1672.
  • [23] Zohari, N.; Mohammadkhani, F.G. Detonation Velocity Assessment of Energetic Cocrystals Using QSPR Approach. Z. Anorg. Allg. Chem. 2020, 646(1): 30-35.
  • [24] Zohari, N.; Mohammadkhani, F.G. Prediction of the Density of Energetic Co-crystals: a Way to Design High Performance Energetic Materials. Cent. Eur. J. Energ. Mat. 2020, 17(1): 31-48.
  • [25] Rothstein, L.R.; Petersen, R. Predicting High Explosive Detonation Velocities from Their Composition and Structure. Propellants Explos. Pyrotech. 1979, 4: 56-60.
  • [26] Mauri, A.; Consonni, V.; Pavan, M.; Todeschini, R. DRAGON Software: An Easy Approach to Molecular Descriptor Calculations. J. Math. Chem. 2006, 56(2):237-248.
  • [27] Randić, M. Generalized Molecular Descriptors. J. Math. Chem. 1991, 7(1): 155-168.
  • [28] Karelson, M. Molecular Descriptors in QSAR/QSPR. Vol. 11, Wiley, Germany, 2000, pp. 141-354; ISBN 978-0-471-35168-9.
  • [29] Randić, M. Novel Molecular Descriptor for Structure-property Studies. Chem. Phys. Lett. 1993, 211(4-5): 478-483.
  • [30] Gramatica, P. Principles of QSAR Models Validation: Internal and External. QSAR Comb. Sci. 2007, 26(5): 694-701.
  • [31] Palm, W.J. Introduction to MATLAB 7 for Engineers. 3rd ed., McGraw-Hill, New York, 2005, pp. 16-47; ISBN 0072922427.
  • [32] Pratim Roy, P.; Paul, S.; Mitra, I.; Roy, K. On Two Novel Parameters for Validation of Predictive QSAR Models. Molecules 2009, 14(5): 1660-1701 (correction, see Molecules 2010, 15(1): 604-605).
  • [33] Lin, H.; Zhu, S.G.; Li, H.Z.; Peng, X.H. Structure and Detonation Performance of a Novel HMX/LLM‐105 Cocrystal Explosive. J. Phys. Org. Chem. 2013, 26(11):898-907.
  • [34] Wang, Y.; Yang, Z.; Li, H.; Zhou, X.; Zhang, Q.; Wang, J.; Liu, Y.A. A Novel Cocrystal Explosive of HNIW with Good Comprehensive Properties. Propellants Explos. Pyrotech. 2014, 39(4): 590-596.
  • [35] Zhang, J.; Parrish, D.A.; Shreeve, J.M. Curious Cases of 3,6-Dinitropyrazolo[4,3-c]pyrazole-based Energetic Cocrystals with High Nitrogen Content: an Alternative to Salt Formation. Chem. Commun. 2015, 51(34): 7337-7340.
  • [36] Cheng, M.; Liu, X.; Luo, Q.; Duan, X.; Pei, C. Cocrystals of Ammonium Perchlorate with a Series of Crown Ethers: Preparation, Structures, and Properties. Cryst. Eng. Comm. 2016, 18(43): 8487-8496.
  • [37] Aakeroy, C.B.; Wijethunga, T.K.; Desper, J. Crystal Engineering of Energetic Materials: Co-crystals of Ethylenedinitramine (EDNA) with Modified Performance and Improved Chemical Stability. Chem. Eur. J. 2015, 21(31): 11029-11037.
  • [38] Guo, C.; Zhang, H.; Wang, X.; Liu, X.; Sun, J. Study on a Novel Energetic Cocrystal of TNT/TNB. J. Mater. Sci. 2012, 48(3): 1351-1357.
  • [39] Zhang, C.; Cao, Y.; Li, H.; Zhou, Y.; Zhou, J.; Gao, T.; Zhang, H.; Yang, Z.; Jiang, G. Toward Low-sensitive and High-energetic Cocrystal I: Evaluation of the Power and the Safety Observed Energetic Cocrystals. Cryst. Eng. Comm. 2013, 15(19):4003-4014.
  • [40] Zhang, H.; Guo, C.; Wang, X.; Xu, J.; He, X.; Liu, Y.; Liu, X.; Huang, H.; Sun, J. Five Energetic Cocrystals of BTF by Intermolecular Hydrogen Bond and π-Stacking Interactions. Cryst. Growth Des. 2013, 13(2): 679-687.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e60f0e54-459a-4bfa-93fa-0c0c023bc3cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.