PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

HTPB-based Binder Surrogates and their Effects on Preliminary Rocket Motor Analyses

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a comparison of the hydroxyl-terminated polybutadiene (HTPB) models used during conceptual and preliminary rocket propulsion analyses. The HTPB molecular formulas and enthalpies of formation from various literature sources, obtained by different methods, are discussed. It is shown that the range of heats of formation and properties of HTPB-based binders presented in these references are very wide. The Benson additivity rule was used to estimate the HTPB enthalpy of formation and to compare it with values found in the literature. The HTPB binder models are set side by side in terms of solid rocket motor performance and observable combustion products, using chemical equilibrium software. Moreover, simple heat transfer and aluminum combustion models are used to present the impact of using different models of binders on design calculations. It isshown that ammonium perchlorate/ HTPB propellant thermochemical output data may not be valuable, if used without caution. Taking appropriate contingencies into account and understanding what type of model is being used is necessary. The objective of this paper is to turn the attention of the propellant and explosives community to a class of problems that are often overlooked during initial design phases due to propellant composition simplification.
Rocznik
Strony
209--230
Opis fizyczny
Bibliogr. 70 poz., rys., tab., wykr.
Twórcy
  • Lukasiewicz Research Network, Institute of Aviation, Space Technologies Center, 110/114 Krakowska Av., 02-256 Warsaw, Poland
Bibliografia
  • [1] Fleeman, E.L. Tactical Missile Design. American Institute of Aeronautics and Astronautics, Inc., Reston, VA, 2001; ISBN 1-56347-494-8.
  • [2] Maggi, F.; Bandera, A.; Galfetti, L.; De Luca, L.T.; Jackson, T.L. Efficient Solid Rocket Propulsion for Access to Space. Acta Astronaut. 2010, 66(11-12): 1563-1573; DOI: 10.1016/j.actaastro.2009.10.012.
  • [3] Guery, J.F.; Chang, I-S.; Shimada, T.; Glick, M.; Boury, D.; Robert, E.; Napior, J.; Wardle, R.; Pérut, C.; Calabro, M.; Glick, R.; Habu, H.; Sekino, N.; Vigier, G.; d’Andrea, B. Solid Propulsion for Space Applications: An Updated Roadmap. Acta Astronaut. 2010, 66(1-2): 201-219; DOI: 10.1016/j.actaastro.2009.05.028.
  • [4] Okninski, A. Multidisciplinary Optimisation of Single-Stage Sounding Rockets using Solid Propulsion. Aerosp. Sci. Technol. 2017, 71: 412-419; DOI: 10.1016/j.ast.2017.09.039.
  • [5] Sutton, G.P.; Biblarz, O. Rocket Propulsion Elements. 7th Edition, Wiley, New York, 2000; ISBN 0471326429.
  • [6] Ang, H.G.; Pisharath, S. Polymers as Binders and Plasticizers – Historical Perspective. In: Energetic Polymers. Wiley, Weinheim, Germany, 2012, pp. 1-17.
  • [7] Davenas, A. Solid Rocket Propulsion Technology. Pergamon Press, Oxford, 1993; ISBN 0080409997.
  • [8] Fundamentals of Solid-Propellant Combustion. (Kuo, K.K., Ed.) American Institute of Aeronautics and Astronautics, 1984; ISBN 0915928841.
  • [9] Okninski, A. On Use of Hybrid Rocket Propulsion for Suborbital Vehicles. Acta Astronaut. 2018, 145: 1-10; DOI: 10.1016/j.actaastro.2018.01.027.
  • [10] Surmacz, P.; Rarata, G. Investigation of Spontaneous Ignition in a 100 N HTP/HTPB Hybrid Rocket Engine. Pr. Inst. Lotnictwa 2015, 3(240): 69-79; DOI:10.5604/05096669.1194990.
  • [11] Cumming, A.S. Modern Approaches to Formulation Design and Production. In: Innovative Energetic Materials: Properties, Combustion Performance and Application. Springer, Singapore, 2020, pp. 375-403.
  • [12] Cavallini, E.; Favini, B.; Di Giacinto, M.; Serraglia, F. Internal Ballistics Simulation of NAWC Tactical Motors with SPINBALL Model. Proc. 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2010-7163, Nashville, TN, 2010; DOI: 10.2514/6.2010-7163.
  • [13] Pang, W.Q.; De Luca, L.T.; Gromov, A.; Cumming, A.S. Innovative Energetic Materials: Properties, Combustion Performance and Application. Springer, Singapore, 2020; ISBN 978-981-15-4830-7.
  • [14] Beckstead, M.W.; Puduppakkam, K.; Thakre, P.; Yang, V. Modeling of Combustion and Ignition of Solid-Propellant Ingredients. Prog. Energy Combust. Sci. 2007, 33(6): 497-551; DOI: 10.1016/j.pecs.2007.02.003.
  • [15] Cai, W.; Thakre, P.; Yang, V. A Model of AP/HTPB Composite Propellant Combustion in Rocket-Motor Environments. Combust. Sci. Technol. 2008, 180: 2143-2169; DOI: 10.1080/00102200802414915.
  • [16] Reydellet, D. Performance of Rocket Motors with Metallized Propellants. AGARD, AR-230, NATO, 1986.
  • [17] Coats, D.E.; Dang, A.L. Improvements to the Solid Performance Program (SPP’12) and a Review of Nozzle Performance Prediction. Proc. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., AIAA-2014-3804, Cleveland, OH, 2014; DOI: 10.2514/6.2014-3804.
  • [18] Rarata, G.; Surmacz, P. Modern Solid Rocket Propellants. (in Polish) Pr. Inst. Lotnictwa 2009, 7(202): 112-124.
  • [19] Whitmore, S.A.; Peterson, Z.W.; Eilers, S.D. Analytical and Experimental Comparisons of HTPB and ABS as Hybrid Rocket Fuels. Proc. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2011-5909, San Diego, CA, 2011; DOI: 10.2514/6.2011-5909.
  • [20] Zhu, X.; Fan, X.; Zhao, N.; Liu, J.; Min, X.; Wang, Z. Comparative Study of Structures and Properties of HTPBs Synthesized viaThree Different Polymerization Methods. Polym. Test. 2018, 68: 201-207.
  • [21] Kalyon, D.M.; Yaras, P.; Aral, B.; Yilmazer, U. Rheological Behavior of a Concentrated Suspension: A Solid Rocket Fuel Simulant. J. Rheol. 1993, 37(1): 35-53; DOI: 10.1122/1.550435.
  • [22] Wang, X.; Shu, Y.; Lu, X.; Mo, H.; Xu, M. Synthesis and Characterization of PolyNIMMO-HTPB-polyNIMMO Triblock Copolymer as a Potential Energetic Binder. Cent. Eur. J. Energ. Mater. 2018, 15(3): 456-467; DOI: 10.22211/cejem/92445.
  • [23] Cheng, T. Review of Novel Energetic Polymers and Binders – High Energy Propellant Ingredients for the New Space Race. Des. Monomers Polym. 2019, 22(1): 54-65; DOI: 10.1080/15685551.2019.1575652.
  • [24] Chmielarek, M.; Skupiński, W.; Wieczorek, Z. Synthesis of HTPB using a SemiBatch Method. Mater. Wysokoenerg. / High Energy Mater. 2020, 12(1): 192-202; DOI: 10.22211/matwys/0115E.
  • [25] Ahmad, N.; Khan, M.B.; Ma, X.; Ul-Haq, N. The Influence of Cross-linking/Chain Extension Structures on Mechanical Properties of HTPB-based Polyurethane Elastomers. Arabian J. Sci. Eng. 2014, 39(1): 43-51; DOI: 10.1007/s13369-013-0874-9.
  • [26] Haska, S.B.; Bayramli, E.; Pekel, F.; Özkar, S. Mechanical Properties of HTPB‐IPDI‐based Elastomers. J. Appl. Polym. Sci. 1997, 64(12): 2347-2354; DOI: 10.1002/(SICI)1097-4628(19970620)64:12<2347::AID-APP9>3.0.CO;2-L.
  • [27] Florczak, B. Viscosity Testing of HTPB Rubber Based Pre-Binders. Cent. Eur. J. Energ. Mater. 2014, 11(4): 625-637.
  • [28] Kondepudi, D.; Prigogine, I. Modern Thermodynamics: from Heat Engines to Dissipative Structures. John Wiley & Son, 2014; DOI: 10.1002/9781118698723.
  • [29] Poling, B.E.; Prausnitz, J.M.; O’Connell,J.P. The Properties of Gases and Liquids. McGraw-Hill, 2001, pp. 3.1-3.50; DOI: 10.1036/0070116822.
  • [30] Kohga, M. Dynamic Mechanical Properties of Hydroxyl-terminated Polybutadiene Containing Polytetrahydrofuran as a Plasticizer. Nihon Reoroji Gakkaishi 2012, 40(4): 185-193; DOI: 10.1678/rheology.40.185.
  • [31] Szala, M.; Maranda, A.; Florczak, B. Investigation of Selected Ingredients of Composite Propellants Using DTA, SEM and Calorimetric Techniques. Cent. Eur. J. Energ. Mater. 2015, 12(2): 323-330.
  • [32] PEP Thermochemical Program. NASA.
  • [33] Rocket Propulsion ‒ Thermochemical Rocket Calculations. Website of College of Engineering of the Colorado State University (CSU), www.engr.colostate.edu/~marchese/rockets15/hw5-2015.doc [accessed on the 17th of January 2016].
  • [34] Heats of Formation and Chemical Compositions, Purdue AAE Propulsion Website, https://engineering.purdue.edu/~propulsi/propulsion/comb/propellants.html [accessed 10/01/2017].
  • [35] Kubota, N. Propellants and Explosives: Thermochemical Aspects of Combustion. Wiley, Weinheim, Germany, 2015; ISBN: 978-3-527-33178-9.
  • [36] RPA, Rocket Propulsion Analysis, Software Package. Ver. 2, Ponomarenko, A., Cologne, Germany, 2011.
  • [37] Rajesh, K.K. Motor, Thrust Modulation in a Nitrous-Oxide/Hydroxyl-Terminated Polybutadiene Hybrid Rocket. Proc. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2006-4503, Sacramento, CA, 2006; DOI: 10.2514/6.2006-4503.
  • [38] Bathelt, H.; Volk, F.; Weindel, M. ICT Database of Thermochemical Values. Fraunhofer Institute for Chemical Technology, Pfinztal, Germany, 2001.
  • [39] Khan, M.A.S.; Dey, A.; Athar, J.; Sikder, A.K. Calculation of Enthalpies of Formation and Band Gaps of Polymeric Binders. RSC Adv. 2014, 4: 32840-32846; DOI: 10.1039/C4RA02847C.
  • [40] Florczak, B. Theoretical Thermodynamic Combustion Properties of Composite Propellants. Mater. Wysokoenerg. / High Energy Mater. 2009, 1: 95-106.
  • [41] Wingborg, N. Improving the Mechanical Properties of Composite Rocket Propellants. Master Thesis, Royal Institute of Technology, Stockholm, Sweden, 2004.
  • [42] Carey, F.A.; Sundberg, R.J. Calculation of Enthalpy of Formation and Enthalpy of Reaction in Advanced Organic Chemistry. 5th Ed., Springer, 2007, pp. 257-269.
  • [43] Benson, S.W.; Cruickshank, F.R.; Golden, D.M.; Haugen, G.R.; O’Neal, H.E.; Rodgers, A.S.; Shaw, R.; Walsh, R. Additivity Rules for the Estimation of Thermochemical Properties. Chem. Rev. 1969, 69(3): 279-324; DOI: 10.1021/cr60259a002.
  • [44] Benson, S.W.; Buss, J.H. Additivity Rules for the Estimation of Molecular Properties. Thermodynamic Properties. J. Chem. Phys. 1958, 29, 546; DOI: 10.1063/1.1744539.
  • [45] Cohen, N. Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon-Hydrogen and Carbon-Hydrogen-Oxygen Compounds. J. Phys. Chem. Ref. Data 1996, 25: 1411; DOI: 10.1063/1.555988.
  • [46] Domalski, E.S.; Hearing, E.D. Estimation of the Thermodynamic Properties of C‐H‐N‐O‐S‐Halogen Compounds at 298.15 K. J. Phys. Chem. Ref. Data 1993, 22: 805; DOI: 10.1063/1.555927.
  • [47] Domalski, E.S.; Hearing, E.D. Estimation of the Thermodynamic Properties of Hydrocarbons at 298.15 K. J. Phys. Chem. Ref. Data 1988, 17: 1637; DOI: 10.1063/1.555814.
  • [48] Bogusz, R.; Magnuszewska, P.; Florczak, B.; Maranda, A. Study of the Effect of Curing Agents on Properties of the Heterogeneous Solid Rocket Propellants. (in Polish) Przem. Chem. 2015, 94(3): 366-368; DOI: 10.15199/62.2015.3.21.
  • [49] Prosen, E.J.; Maron, F.W.; Rossini, F.D. Heats of Combustion, Formation, and Insomerization of Ten C4 Hydrocarbons. J. Res. NBS 1951, 46: 106-112; DOI: 10.6028/JRES.046.015.
  • [50] Maksimowski, P.; Kasztankiewicz,A.B.; Kopacz,W. 3,3‐Bis(azidomethyl)oxetane(BAMO) Synthesis via Pentaerythritol Tosyl Derivates. Propellants, Explos. Pyrotech. 2017, 42(9): 1020-1026; DOI: 10.1002/prep.201700039.
  • [51] CEA, Chemical Equilibrium with Applications Software Ver. 2.0. Gordon, S.; McBride, B.J., NASA, Cleveland, OH, 2004.
  • [52] Gordon, S.; McBride, B.J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, I.Analysis. NASA Reference Publication, RP-1311, Cleveland, OH, 1994.
  • [53] Maggi, F.; Gariani, G.; Galfetti, L.; DeLuca, L.T. Theoretical Analysis of Hydrides in Solid and Hybrid Rocket Propulsion. Int. J. Hydrogen Energy 2012, 37(2): 1760-1769; DOI: 10.1016/j.ijhydene.2011.10.018.
  • [54] Nowakowski, P.; Pakosz, M.; Okninski, A.; Rysak, D.; Kaniewski, D.; Marciniak,B.; Wolanski, P. Design of a Solid Rocket Motor for Controlled Deorbitation. Proc. 53rd AIAA/SAE/ASEE Joint Propulsion Conf. 2017, p. 5083; DOI: 10.2514/6.2017-5083.
  • [55] Kosugi, Y.; Oyama, A.; Fujii, K.; Kanazaki, M. Multidisciplinary and Multi-objective Design Exploration Methodology for Conceptual Design of a Hybrid Rocket. In: Infotech@ Aerospace 2011 , St. Luis, 2011, p. 1634; DOI: 10.2514/6.2011-1634.
  • [56] Cavalleri, R.; Loehr, R. Hybrid Rocket Propulsion Performance Prediction. Proc. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2005, p. 3548; DOI: 10.2514/6.2005-3548.
  • [57] Oliver, R.C. On Predicting Secondary Smoke Humidity. Institute for Defense Analyses, 1998.
  • [58] Bartz, D.R. A Simple Equation for Rapid Estimation of Rocket Nozzle Convective Heat Transfer Coefficient. J. Jet Propulsion 1957, 27: 49-53.
  • [59] Smith, D.W. A comparison of Experimental Heat-Transfer Coefficients in a Nozzle with Analytical Predictions from Bartz’s Methods for Various Combustion Chamber Pressures in a Solid Propellant Rocket Motor. Master Thesis, North Carolina State University, Raleigh, NC, 1970.
  • [60] Solid Rocket Motor Nozzles. NASA SP-8115, Cleveland, OH, 1975.
  • [61] Mehta, R.C.; Iyer, R.N. Thermal Stress Analysis of a Solid Rocket Motor Nozzle Throat Insert using Finite Element Method. Indian J. Eng. Mater. Sci. 1998, 5: 271-277.
  • [62] Rashid, A.A. Convective Heat Transfer in the Reusable Solid Rocket Motor of the Space Transportation System. Proc. 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., AIAA-2001-3585, Salt Lake City, UT, 2001.
  • [63] Huzel, D.K.; Huang, D.H. Modern Engineering for Design of Liquid Propellant Rocket Engines. AIAA, Progress in Astronautics and Aeronautics, Washington DC, 1991; ISBN 978-1-56347-013-4.
  • [64] Xiao, L.; Pang, W.; Qin, Z.; Li, J.; Fu, X.; Fan, X. Cluster Analysis of Al. Agglomeration in Solid Propellant Combustion. Combust. Flame 2019, 203: 386-396; DOI: 10.1016/j.combustflame.2018.12.032.
  • [65] DeLuca, L.T.; Pang, W.Q. Transient Burning of nAl-Loaded Solid Rocket Propellants. In: Innovative Energetic Materials: Properties, Combustion Performance and Application. (Pang, W.Q.; DeLuca, L.T.; Gromov, A.A.; Cumming,A.S., Eds.) Springer, Singapore, 2020, pp. 111-156; DOI: 10.1007/978-981-15-4831-4_5.
  • [66] Surmacz, P.; Rarata, G. Hybrid Rocket Propulsion Development and Application. (in Polish) Pr. Inst. Lotnictwa 2009, 3(198): 123-137.
  • [67] Carmicino, C.; Scaramuzzino, F.; Russo Sorge,A. Trade-off between Paraffin-based and Aluminium-loaded HTPB Fuels to Improve Performance of Hybrid Rocket Fed with N2O. Aerosp. Sci. Technol. 2014, 37: 81-92; DOI: 10.1016/j.ast.2014.05.010.
  • [68] Sun, X.; Tian, H.; Yu, N.; Cai, G. Regression Rate and Combustion Performance Investigation of Aluminum Metallized HTPB/98HP Hybrid Rocket Motor with Numerical Simulation. Aerosp. Sci. Technol. 2015, 42: 287-296; DOI: 10.1016/j.ast.2015.01.014.
  • [69] Gariani, G.; Maggi, F.; Galfetti, L. Simulation Code for Hybrid Rocket Combustion. Proc. 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA6872, Nashville, TN, 2010; DOI: 10.2514/6.2010-6872.
  • [70] Beckstead, M. Summary of Aluminum Combustion. NATO RTO-EN-023, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e60eba1a-4b2f-4eb1-9cab-30d60bf7b7cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.