PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected problems of experimental testing marine stern tube bearings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents typical methods for conducting experimental tests on main shaft slide bearings. There are described their possible testing capabilities , advantages , drawbacks and limitations. Various testing methods were analyzed to find a solution able of providing a wide range of possible investigations at possibly acceptable limitations.
Rocznik
Tom
Strony
142--154
Opis fizyczny
Bibliogr. 73 poz., rys.
Twórcy
  • Gdańsk University of Technology ul. Narutowicza 11/12, 80-233 Gdańsk Poland
  • Gdańsk University of Technology ul. Narutowicza 11/12, 80-233 Gdańsk Poland
  • Gdańsk University of Technology ul. Narutowicza 11/12, 80-233 Gdańsk Poland
Bibliografia
  • 1. R. Orndorff :Water lubricated rubber bearings, history and new developments, Nav Eng J, 1985, pp. 39–52,.
  • 2. H. Hirani and M. Verma: Tribological study of elastomeric bearings for marine propeller shaft system, Tribol. Int., vol. 42, 2009, No. 2, pp. 378–390.
  • 3. W. Litwin and C. Dymarski: Experimental research on water-lubricated marine stern tube bearings in conditions of improper lubrication and cooling causing rapid bush wear, Tribol. Int., vol. 95, 2016, pp. 449–455,.
  • 4. W. Litwin : Properties comparison of rubber and three layer PTFE-NBR-bronze water lubricated bearings with lubricating grooves along entire bush circumference based on experimental tests, Tribol. Int., vol. 90, 2015, pp. 404–411.
  • 5. B. J. Blair: Getting the most from your bearings. World Pumps, vol. 2016,No. 7–8, pp. 36–40,.
  • 6. M. Wodtke and M. Wasilczuk: Evaluation of apparent Young’s modulus of the composite polymer layers used as sliding surfaces in hydrodynamic thrust bearings, Tribol. Int., vol. 97, 2016, pp. 244–252.
  • 7. W. Litwin, A. Olszewski, and M. Wodtke: Influence of Shaft Misalignment on Water Lubricated Turbine Sliding Bearings with Various Bush Modules of Elasticity. Key Eng. Mater., vol. 490, 2011, pp. 128–134,
  • 8. W. Litwin: Water lubricated marine stern tube bearings – Attempt at estimating hydrodynamic capacity,” in Proceedings of the ASME/STLE International Joint Tribology Conference 2009, IJTC2009, 2010.
  • 9. W. Litwin: Influence of local bush wear on water lubricated sliding bearing load carrying capacity. Tribol. Int., vol. 103, 2016.
  • 10. Q. Hongling, Z. Xincong, X. Chuntao, W. Hao, and L. Zhenglin: Tribological Performance of a Polymer Blend of NBR Used for Stern Bearings, 2012, pp. 133–139,.
  • 11. Y. Wang, X. Shi, and L. Zhang,: Experimental and numerical study on water-lubricated rubber bearings, Ind. Lubr. Tribol. Exp., vol. 2, 2014, no. 51175275, pp. 282–288,.
  • 12. M. Del Din and E. Kassfeldt: Wear characteristics with mixed lubrication conditions in a full scale journal bearing, Wear, vol. 232, 1999, no. 2, pp. 192–198,
  • 13. D. L. Cabrera, N. H. Woolley, D. R. Allanson, and Y. D Tridimas: Film pressure distribution in water-lubricated rubber journal bearings, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., vol. 219, 2005, no. 2, pp. 125–132,
  • 14. Y. Zhimin et al.: Study on tribological and vibration performance of a new UHMWPE/graphite/NBR water lubricated bearing material, Wear, vol. 332–333, 2015, pp. 872–878.
  • 15. R. Colsher, I. Anwar, J. Dunfee, and M. Kandl: Development of Water Lubricated Bearing for Steam Turbine Application, J. Lubr. Technol., vol. 105, 1983, no. 3, p. 318.
  • 16. G. Gao, Z. Yin, D. Jiang, and X. Zhang: Numerical analysis of plain journal bearing under hydrodynamic lubrication by water, Tribol. Int., vol. 75, 2014, pp. 31–38.
  • 17. A.-F. Cristea, J. Bouyer, M. Fillon, and M. D. Pascovici; Transient Pressure and Temperature Field Measurements of a Lightly Loaded Circumferential Groove Journal Bearing, Tribol. Trans., vol. 54, 2011, no. 5, pp. 806–823.
  • 18. R. Gawarkiewicz and M. Wasilczuk: Wear measurements of self-lubricating bearing materials in small oscillatory movement, Wear, vol. 263, 2007, no. 1–6 SPEC. ISS., pp. 458–462.
  • 19. A. Olszewski, M. Wodtke, and P. Hryniewicz: Experimental Investigation of Prototype Water-Lubricated Compliant Foil Bearings, Key Eng. Mater., vol. 490, 2011, pp. 97–105.
  • 20. M. Wodtke, A. Schubert, M. Fillon, M. Wasilczuk, and P. Pajaczkowski: Large hydrodynamic thrust bearing: Comparison of the calculations and measurements, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., vol. 228, 2014, no. 9, pp. 974–983.
  • 21. M. Mehdizadeh and F. Khodabakhshi: An investigation into failure analysis of interfering part of a steam turbine journal bearing, Case Stud. Eng. Fail. Anal., vol. 2, 2014, no. 2, pp. 61–68,.
  • 22. W. Wieleba: The Mechanism of Tribological Wear of Thermoplastic Materials, Arch. Civ. Mech. Eng., Vol. VII, 2007, No. 4.
  • 23. J. Takabi and M. M. Khonsari: On the thermally-induced seizure in bearings: A review, Tribol. Int., vol. 91, 2015, pp. 118–130.
  • 24. Q. Wang : Seizure failure of journal-bearing conformal contacts, Wear, vol. 210, 1997, no. 1–2, pp. 8–16.
  • 25. D. Garner, A. L.-P. of the 13th, and undefined 1984, Temperature measurements in fluid film bearings, oaktrust. library.tamu.edu.
  • 26. P. De Choudhury and E. W. Barth: A Comparison of Film Temperatures and Oil Discharge Temperature for a TiltingPad Journal Bearing, J. Tribol., vol. 103, 1981, no. 1, p. 115.
  • 27. S. Strzelecki, Z. S.- Tribologia, and undefined 2011, Operating temperatures of the bearing system of grinder spindle, t.tribologia.eu.
  • 28. D. G. Lee and S. S. Kim: Failure analysis of asbestos-phenolic composite journal bearing, Compos. Struct., vol. 65, 2004, no. 1, pp. 37–46.
  • 29. S. B. Glavatskih and M. Fillon: TEHD Analysis of Thrust Bearings With PTFE-Faced Pads, J. Tribol., vol. 128, 2006, no. 1, p. 49.
  • 30. O. Nosko, T. Nagamine, A. L. Nosko, A. M. Romashko, H. Mori, and Y. Sato: Measurement of temperature at sliding polymer surface by grindable thermocouples, Tribol. Int., vol. 88, 2015, pp. 100–106.
  • 31. M. Hoić, M. Hrgetić, and J. Deur: Design of a pin-on-disctype CNC tribometer including an automotive dry clutch application, Mechatronics, vol. 40, 2016, pp. 220–232.
  • 32. E. Ciulli, P. Forte, M. Libraschi, and M. Nuti : Set-up of a novel test plant for high power turbomachinery tilting pad journal bearings, Tribol. Int., vol. 127, no. November 2017, pp. 276–287, 2018.
  • 33. P. Śliwiński : The Influence of Water and Mineral Oil On Mechanical Losses in the Displacement Pump for Offshore and Marine Applications: Polish Marit. Res., vol. 25, 2018, no. s1, pp. 178–188.
  • 34. A. Dadouche, M. Fillon, and J. . Bligoud: Experiments on thermal effects in a hydrodynamic thrust bearing, Tribol. Int., vol. 33, 2000, no. 3–4, pp. 167–174.
  • 35. B. Remy, B. Bou-Saïd, and T. Lamquin : Fluid inertia and energy dissipation in turbocharger thrust bearings, Tribol. Int., vol. 95, 2016, pp. 139–146.
  • 36. S. B. Glavatskih: A method of temperature monitoring in fluid film bearings, Tribol. Int., vol. 37, 2004, no. 2, pp. 143–148.
  • 37. T. W. Kerlin and M. Johnson: Practical Thermocouple Thermometry (2nd Edition). ISA, 2012.
  • 38. W. Dai, B. Kheireddin, H. Gao, and H. Liang : Roles of nanoparticles in oil lubrication, Tribol. Int., vol. 102, 2016, pp. 88–98.
  • 39. J. Duchowski : Examination of journal bearing filtration requirements, Lubr. Eng., vol. 09, 1998, pp. 1–9.
  • 40. J. Duchowski, H. International, and J. Duchowski: Filtration requirements for journal bearings exposed to different contaminant levels, Lubr. Eng., vol. 06, 2002, no. July, pp. 34–39.
  • 41. D. Hargreaves and S. C. Sharma: Effects of solid contaminants on journal bearing performance, Proceedings of the 2nd World Tribology Congress, 3-7 September 2001. pp. 237–240.
  • 42. A. Dadouche and M. J. Conlon: Operational performance of textured journal bearings lubricated with a contaminated fluid, Tribol. Int., vol. 93, 2016, pp. 377–389.
  • 43. M. M. Khonsari and E. R. Booser: Effect of contamination on the performance of hydrodynamic bearings, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., vol. 220, 2006, no. 5, pp. 419–428.
  • 44. A. Akchurin, R. Bosman, P. M. Lugt, and M. van Drogen: Analysis of Wear Particles Formed in Boundary-Lubricated Sliding Contacts, Tribol. Lett., vol. 63, 2016, no. 2, pp. 1–14.
  • 45. A. Akchurin, R. Bosman, and P. M. Lugt: Generation of wear particles and running-in in mixed lubricated sliding contacts, Tribol. Int., vol. 110, 2017, no. February, pp. 201–208.
  • 46. A. Akchurin, R. Bosman, and P. M. Lugt: A Stress-CriterionBased Model for the Prediction of the Size of Wear Particles in Boundary Lubricated Contacts, Tribol. Lett., vol. 64, 2016, no. 3, pp. 1–12.
  • 47. G. Pintaude: Characteristics of Abrasive Particles and Their Implications on Wear, New Tribol. Ways, no. April 2011.
  • 48. C. Q. Yuan, Z. Peng, X. C. Zhou, and X. P. Yan : The characterization of wear transitions in sliding wear process contaminated with silica and iron powder, Tribol. Int., vol. 38, 2005, no. 2, pp. 129–143.
  • 49. L. Peña-Parás et al.: Effects of substrate surface roughness and nano/micro particle additive size on friction and wear in lubricated sliding, Tribol. Int., vol. 119, 2018, no. February 2017, pp. 88–98.
  • 50. S. M. Park, G. H. Kim, and Y. Z. Lee: Investigation of the wear behaviour of polyacetal bushings by the inflow of contaminants, Wear, vol. 271, 2011, no. 9–10, pp. 2193–2197.
  • 51. E. Szymczak and D. Burska : Charakterystyka rozkładu wielkości cząstek in situ w strefie rozpływu wód Wisły (Zatoka Gdańska) (in Polish). ?? pp. 1–2, 2014.
  • 52. M. Damrat, A. Zaborska, and M. Zajaczkowski: Sedimentation from suspension and sediment accumulation rate in the River Vistula prodelta, Gulf of Gdańsk (Baltic Sea), Oceanologia, vol. 55, 2013, no. 4, pp. 937–950.
  • 53. I. Geologiczny and I. Geologii ?? : Litologia i skład mineralny osadów z dna Basenu Gdańskiego (in Polish), ?? vol. 313, 1980, no. 2.
  • 54. T. Leipe and B. Sea : The kaolinite/chlorite clay mineral ratio in surface sediments of the southern Baltic Sea as an indicator for long distance transport of fine-grained material, Baltica, vol. 16, 2003, pp. 31–36.
  • 55. A. Ya and T. Yu : Revealing the influence of various factors on concentration and spatial distribution of suspended matter based on remote sensing data, Proc. SPIE, vol. 9638, 2015, pp. 1–12.
  • 56. Y. Solomonov: Experimental investigation of tribological characteristics of water-lubricated bearings materials on a pin-on-disk test rig, Yuriy Solomonov Master of Philosophy Thesis, The University of Adelaide School of Mechanical Engineering April 2014.
  • 57. C. L. Dong, C. Q. Yuan, X. Q. Bai, Y. Yang, and X. P. Yan: Study on wear behaviours for NBR/stainless steel under sand water-lubricated conditions, Wear, vol. 332–333, 2015, pp. 1012–1020.
  • 58. C. Yuan, Z. Guo, W. Tao, C. Dong, and X. Bai: Effects of different grain sized sands on wear behaviours of NBR/ casting copper alloys, Wear, vol. 384–385, 2017, pp. 185–191.
  • 59. C. P. Gao et al.: Tribological behaviors of epoxy composites under water lubrication conditions, Tribol. Int., vol. 95, 2016, pp. 333–341.
  • 60. S. Thörmann, M. Markiewicz, and O. von Estorff: On the stick-slip behaviour of water-lubricated rubber sealings, J. Sound Vib., vol. 399, 2017, pp. 151–168.
  • 61. B. S. Mann and V. Arya : An experimental model for mixed friction during running-in, Wear, vol. 253, 2002, no. 5–6, pp. 541–549.
  • 62. L. Deleanu and C. Georgescu: Water lubrication of PTFE composites, Ind. Lubr. Tribol., vol. 67, 2015, no. 1, pp. 1–8.
  • 63. S. Chen et al.: Tribological properties of polyimide-modified UHMWPE for bushing materials of seawater lubricated sliding bearings, Tribol. Int., vol. 115, 2017, no. 126, pp. 470–476.
  • 64. A. Ismailov, M. Järveläinen, and E. Levänen: Problematics of friction in a high-speed rubber-wheel wear test system: A case study of irregularly rough steel in water lubricated contact, Wear, vol. 408–409, 2018, no. December 2017, pp. 65–71.
  • 65. C. Dong, L. Shi, L. Li, X. Bai, C. Yuan, and Y. Tian : Stick-slip behaviours of water lubrication polymer materials under low speed conditions, Tribol. Int., vol. 106, 2017, no. October 2016, pp. 55–61.
  • 66. S. Meicke and R. Paasch : Seawater lubricated polymer journal bearings for use in wave energy converters, Renew. Energy, vol. 39, 2012, no. 1, pp. 463–470.
  • 67. S. Jiang, Z. Guo, C. Yuan, A. Liu, and X. Bai : Study on the tribological properties of modified polyurethane material for water-lubricated stern bearing, J. Appl. Polym. Sci., vol. 135, 2018, no. 22, pp. 1–13.
  • 68. J. Bouyer and M. Fillon : Experimental measurement of the friction torque on hydrodynamic plain journal bearings during start-up, Tribol. Int., vol. 44, 2011, no. 7–8, pp. 772–781.
  • 69. Ł. Breńkacz and G. Żywica :The experimental identification of the dynamic coefficients for two hydrodynamic journal bearings, SIRM 2017, Schwingungen rotierenden Maschinen, vol. 24, 2017, no. 96, pp. 157–164.
  • 70. T. Dimond, R. D. Rockwell, P. N. Sheth, and P. E. Allaire: A New Fluid Film Bearing Test Rig for Oil and Water Bearings, Struct. Dyn. Parts A B, Vol. 5, 2008, pp. 1101–1110.
  • 71. N. Wang and Q. Meng : Research on wireless nondestructive monitoring method for film pressure of water-lubricated bearing, Ind. Lubr. Tribol., vol. 67, 2015, no. 4, pp. 349–358.
  • 72. N. Wang, Q. Meng, P. Wang, T. Geng, and X. Yuan: Experimental Research on Film Pressure Distribution of Water-Lubricated Rubber Bearing With Multiaxial Grooves, J. Fluids Eng., vol. 135, 2013, no. 8, p. 84501.
  • 73. S. Yamajo and F. Kikkawa: Development and Application of PTFE Compound Bearings, Dyn. Position. Conf., 2004.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e60e47a1-16d4-4cd0-9cda-39bf68f26b1e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.