PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integrated 25 GHz and 50 GHz spectral line width dense wavelength division demultiplexer on single photonic crystal chip

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We propose a new integrated demultiplexer model using the two-dimensional photonic crystal (2D PC) through the hexagonal resonant cavity (HRC) for the International Telecommunication Union (ITU) standard. The integrated model of demultiplexer for both 25 GHz and 50 GHz has been designed for the first time. The demultiplexer consists of bus input waveguide, drop waveguide, Hexagonal Resonant Cavity (HRC), 6 Air Hole Filter (6-AHF), 7 Air Hole Filter (7-AHF). The 7-AHF is used to filter 25GHz wavelength, and the 6-AHF filter is used to filter 50 GHz wavelength. The Q-factor on the designed demultiplexer is flexible based on the idea of increasing the number of air holes between drop waveguide and resonant cavity. The demultiplexer is designed to drop maximum 8 resonant wavelengths. One side of demultiplexer is able to drop 50 GHz ITU standard wavelengths, which are of 1556.3 nm, 1556.7 nm, 1557.1 nm and 1557.5 nm, and further the other facet is able to drop 25 GHz wavelengths, which are of 1551.4 nm, 1551.6 nm, 1551.8 nm, and 1552.0 nm. The proposed demultiplexer may be carried out within the integrated dual system. This system is able to lessen the architecture cost and the size is miniaturized substantially.
Słowa kluczowe
Rocznik
Strony
285--295
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Electronics and Communication Engineering, St. Joseph’s Institute of Technology, Chennai, 600119, Tamilnadu, India
autor
  • Department of Electronics and Communication Engineering, Valliammai Engineering College, Kattankulathur, 603203, Tamilnadu, India
autor
  • Department of Electronics and Communication Engineering, Mount Zion College of Engineering and Technology, Pudukkottai, 622 507, Tamilnadu, India
autor
  • Department of Electronics Engineering, Pondicherry University, Puducherry, 605 014, India
Bibliografia
  • [1] R. Saunders, Coherent DWDM technology for high speed optical communications, Opt. Fiber Technol. 17 (2011) 445–451.
  • [2] K.V. Shanthi, S. Robinson, Two-dimensional photonic crystal based sensor for pressure sensing, Photonic Sens. 4 (2014) 248–253.
  • [3] M. Bayindir, B. Temelkuran, E. Ozbay, Photonic-crystal-based beam splitters, Appl. Phys. Lett. 77 (2000) 3902–3904.
  • [4] S. Mandal, X. Serey, D. Erickson, Nanomanipulation using silicon photonic crystal resonators, Nano Lett. 10 (2009) 99–104.
  • [5] A. Locatelli, D. Modotto, D. Paloschi, C. De Angelis, All optical switching in ultrashort photonic crystal couplers, Opt. Commun. 237 (2004) 97–102.
  • [6] H. Kosaka, T. Kawashima, A. Tomita, T. Sato, S. Kawakami, Photonic-crystal spot-size converter, Appl. Phys. Lett. 76 (2000) 268–270.
  • [7] S. Fan, P.R. Villeneuve, J.D. Joannopoulos, H.A. Haus, Channel drop filters in photonic crystals, Opt. Express 3 (1998) 4–11.
  • [8] Y. Zhai, H. Tian, Y. Ji, Slow light property improvement and optical buffer capability in ring-shape-hole photonic crystal waveguide, J. Lightwave Technol. 29 (2011) 3083–3090.
  • [9] S.G. Johnson, P.R. Villeneuve, S. Fan, J.D. Joannopoulos, Linear waveguides in photonic-crystal slabs, Phys. Rev. B 62 (2000) 8212.
  • [10] M.Y. Tekeste, J.M. Yarrison-Rice, High efficiency photonic crystal based wavelength demultiplexer, Opt. Express 14 (2006) 7931–7942.
  • [11] S. Rawal, R.K. Sinha, Design and analysis and optimization of silicon-on-insulator photonic crystal dual band wavelength demultiplexer, Opt. Commun. 282 (2009) 3889–3894.
  • [12] H. Ghorbanpour, S. Makouei, 2-Channel all optical demultiplexer based on photonic crystal ring resonator, Front. Optoelectron. 6 (2013) 224–227.
  • [13] A. Pashaei, A. Andalib, H.A. Banaei, Decrease of crosstalk phenomenon optic two channel demultiplexer using resonant line defect cavity in 2D photonic crystal, Majlesi J. Telecommun. Devices 3 (2014) 35–40.
  • [14] A. Benmerkhi, M. Bouchemat, T. Bouchemat, Design of photonic crystal demultiplexer for optical communication application, Nanosci. Nanotechnol. 6 (2016) 29–34.
  • [15] H. Alipour-Banaei, S. Serajmohammadi, F. Mehdizadeh, Effect of scattering rods in the frequency response of photonic crystal demultiplexers, J. Optoelectron. Adv. Mater. 17 (2015) 259–263.
  • [16] H. Alipour-Banaei, S. Serajmohammadi, F. Mehdizadeh, Optical wavelength demultiplexer based on photonic crystal ring resonators, Photon. Netw. Commun. 29 (2015) 146–150.
  • [17] M. Koshiba, Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers, J. Lightwave Technol. 19 (2001) 1970–1975.
  • [18] T. Niemi, L.H. Frandsen, K.K. Hede, A. Harpoth, P.I. Borel, M. Kristensen, Wavelength-division demultiplexing using photonic crystal waveguides, IEEE Photon. Technol. Lett. 18 (2006) 226–228.
  • [19] M. Djavid, F. Monifi, A. Ghaffari, M.S. Abrishamian, Heterostructure wavelength division demultiplexers using photonic crystal ring resonators, Opt. Commun. 281 (2008) 4028–4032.
  • [20] M.R. Rakhshani, M.A. Mansouri-Birjandi, Heterostructure four channel wavelength demultiplexer using square photonic crystals ring resonators, J. Electromagn. Waves Appl. 26 (2012) 1700–1707.
  • [21] A. Zahedi, F. Parandin, M.M. Karkhanehchi, H.H. Shams, S. Rajamand, Design and simulation of optical 4-channel demultiplexer using photonic crystals, J. Opt. Commun. (2017) 0039, http://dx.doi.org/10.1515/joc-2017-0039.
  • [22] A. Rostami, F. Nazari, H.A. Banaei, A. Bahrami, A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure, Photon. Nano Fundam. Appl. 8 (2010) 14–22.
  • [23] W. Liu, D. Yang, H. Tian, Y. Ji, Optimization transmission of photonic crystal coupled cavity and design of demultiplexer for wavelength division multiplexing application, Opt. Eng. 51 (2012), 084002-1.
  • [24] H. Alipour-Banaei, F. Mehdizadeh, S. Serajmohammadi, A novel 4-channel demultiplexer based on photonic crystal ring resonators, Optik 124 (2013) 5964–5967.
  • [25] C.W. Kuo, C.F. Chang, M.H. Chen, S.Y. Chen, Y.D. Wu, A new approach of planar multi-channel wavelength division multiplexing system using asymmetric super-cell photonic crystal structures, Opt. Express 15 (2007) 198–206.
  • [26] M.R. Rakhshani, M.A. Mansouri-Birjandi, Z. Rashki, Design of six channel demultiplexer by heterostructure photonic crystal resonant cavity, Int. Res. J. Appl. Basic Sci. 4 (2013) 976–984.
  • [27] A. Sharkawy, S. Shi, D.W. Prather, Multichannel wavelength division multiplexing with photonic crystals, Appl. Opt. 40 (2001) 2247–2252.
  • [28] S. Bouamami, R. Naoum, New version of seven wavelengths demultiplexer based on the microcavities in a two-dimensional photonic crystal, Optik 125 (2014) 7072–7074.
  • [29] K. Venkatachalam, D.S. Kumar, S. Robinson, Performance analysis of 2D-photonic crystal based eight channel wavelength division demultiplexer, Optik 127 (2016) 8819–8826.
  • [30] K. Venkatachalam, D.S. Kumar, S. Robinson, Investigation on 2D photonic crystal-based eight channel wavelength-division demultiplexer, Photon. Netw. Commun. 34 (2017) 100–110.
  • [31] K. Venkatachalam, D.S. Kumar, S. Robinson, Design and analysis of dual ring resonator based 2D-photonic crystal WDDM, Proceedings of AIP Conference 1849 (2017), 020016-1-020016-3.
  • [32] R. Talebzadeh, M. Soroosh, Y.S. Kavian, F. Mehdizadeh, All-optical 6-and 8-channel demultiplexers based on photonic crystal multilayer ring resonators in Si/C rods, Photon. Netw. Commun. (2017) 1–10.
  • [33] R. Talebzadeh, M. Soroosh, Y.S. Kavian, F. Mehdizadeh, Eight-channel all-optical demultiplexer based on photonic crystal resonant cavities, Optik 140 (2017) 331–337.
  • [34] F. Mehdizadeh, M. Soroosh, A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities, Photon. Netw. Commun. 31 (2016) 65–70.
  • [35] F. Shuai, W. Yi-Quan, Light propagation properties of two-dimensional photonic crystal channel filters with elliptical micro-cavities, Chin. Phys. B 20 (10) (2011), 104207.
  • [36] V.R. Balaji, M. Murugan, S. Robinson, Optimization of DWDM demultiplexer using regression analysis, J. Nanomater. (2016), 9850457.
  • [37] H. Tian, G. Shen, W. Liu, Y. Ji, Integration of both dense wavelength-division multiplexing and coarse wavelength-division multiplexing demultiplexer on one photonic crystal chip, Opt. Eng. 52 (2013), 076110-076110.
  • [38] V.R. Balaji, M. Murugan, S. Robinson, R. Nakkeeran, Design and optimization of photonic crystal based eight channel dense wavelength division multiplexing demultiplexer using conjugate radiant neural network, Opt. Quant. Electron. 49 (2017) 198.
  • [39] Z.Y. Li, L.L. Lin, Photonic band structures solved by a plane-wave-based transfer-matrix method, Phys. Rev. E 67 (2003), 0466067.
  • [40] D.M. Sullivan, An unsplit step 3-D PML for use with the FDTD method, IEEE Microw. Wirel. Compon. Lett. 7 (1997) 184–186.
  • [41] D.M. Sullivan, A simplified PML for use with the FDTD method, IEEE Microw.Guided Wave Lett. 6 (1996) 97–99.
  • [42] P.R. Villeneuve, S. Fan, J.D. Joannopoulos, Microcavties in photonic crystals:mode symmetry, tunability, and coupling efficiency, Phys. Rev. B 54 (1996)7837–7839.
  • [43] E.H. Khoo, A.Q. Liu, J.H. Wu, J. Li, D. Pinjala, Modified step theory forinvestigating mode coupling mechanism in photonic crystal waveguide taper,Opt. Express 14 (2006) 6035–6054.
  • [44] K. Sangin, I. Park, H. Lim, S.Ch. Kee, Highly efficient photonics crystal-basedmultichannel drop filters of three-port system with reflection feedback, Opt.Express 22 (2004) 5518–5525.
  • [45] A. Lavrinenko, P.I. Borel, L.H. Fradsen, M. Thorhauge, A. Harpoth, M.Kristensen, T. Niemi, H.M.H. Chong, Comprehensive FDTD modeling ofphotonic crystal waveguide components, Opt. Express 12 (2004) 234–248.
  • [46] S.T. Chu, S.K. Chaudhuri, A finite-difference time-domain method for thedesign and analysis of guided-wave optical structures, J. Light Wave Technol.7 (1989) 2033–2038.
  • [47] Y. Shen, K. Lu, W. Gu, Coherent and incoherent crosstalk in WDM opticalnetworks, J. Light Wave Technol. 17 (1999) 759–764.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e60cebdd-33c8-4ef7-9298-3c3eb5e44084
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.