Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Ocena zastosowania napędów hybrydowych w warunkach ruchu miejskiego
Języki publikacji
Abstrakty
The conditions of use of the vehicle significantly affect the performance results. Traffic conditions in a specific city directly affect the consumption of energy, fuel and emissions of harmful compounds in exhaust fumes. Conduction of the measurements of a vehicle’s performance parameters in operating conditions is very troublesome and is often not possible to realize. An alternative is to use the simulation programs. Vehicle simulation programs offer options related to vehicle models or drive unit components and allow development of new models. Based on the results of simulation testing, it is possible to analyse the level of fuel and energy consumption as well as emissions of harmful compounds in exhaust gases and the operating effectiveness of the drive system in the speed profile. The paper presents the evaluation of the effectiveness of using hybrid electric drive system in passenger cars in medium-sized city traffic conditions using the Kielce example. The simulation tests were based on the speed profiles recorded during real-world test drives in various times of the day. The simulation results were used to conduct an analysis of fuel consumption and pollutant emissions recorded by conventional and hybrid vehicles.
Warunki użytkowania pojazdu mają znaczący wpływ na parametry eksploatacyjne pojazdu. Warunki ruchu w określonym mieście bezpośrednio wpływają na zużycie energii, paliwa i poziom emisji szkodliwych związków zawartych w spalinach. Przeprowadzenie pomiarów parametrów eksploatacyjnych pojazdu w warunkach rzeczywistych jest kłopotliwe i często niemożliwe do zrealizowania. Alternatywą jest wykorzystanie symulacji komputerowych. Programy do symulacji pojazdów oferują, między innymi, modele pojazdów lub komponentów układu napędowego oraz pozwalają na opracowanie nowych modeli. Na podstawie wyników badań symulacyjnych możliwa jest analiza poziomu zużycia paliwa, energii, emisji szkodliwych związków zawartych w spalinach oraz efektywności pracy układu napędowego w profilu prędkości. W niniejszej pracy przedstawiono ocenę efektywności zastosowania napędów hybrydowych w samochodach osobowych w warunkach ruchu miasta średniej wielkości na przykładzie Kielc. Do badań symulacyjnych wykorzystano profile prędkości, zarejestrowane podczas rzeczywistych przejazdów w różnych porach dnia. Na podstawie wyników symulacji przeprowadzono analizę zużycia paliwa oraz emisji zanieczyszczeń, zarejestrowanych dla pojazd z napędem konwencjonalnym oraz pojazdów z napędem hybrydowym.
Czasopismo
Rocznik
Tom
Strony
154--160
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Department of Automotive Engineering and Transport Kielce University of Technology Al. Tysiąclecia P.P. 7, 25-314 Kielce, Poland
autor
- Department of Automotive Engineering and Transport Kielce University of Technology Al. Tysiąclecia P.P. 7, 25-314 Kielce, Poland
autor
- Department of Production Engineering Kielce University of Technology Al. Tysiąclecia P.P. 7, 25-314 Kielce, Poland
Bibliografia
- 1. Al-Samari A. Study of emissions and fuel economy for parallel hybrid versus conventional vehicles on real world and standard driving cycles. Alexandria Engineering Journal 2017; 56(4): 721-726, 10.1016/j.aej.2017.04.010.
- 2. Björnsson L, Karlsson S. Plug-in hybrid electric vehicles: How individual movement patterns affect battery requirements, the potential to replace conventional fuels, and economic viability. Applied Energy 2015; 143: 336-347, doi:10.1016/j.apenergy.2015.01.041.
- 3. Fontaras G, Pistikopoulos P, Samaras Z. Experimental evaluation of hybrid vehicle fuel economy and pollutant emissions over realworld simulation driving cycles. Atmospheric Environment 2008; 42(18): 4023-4035, doi.org/10.1016/j.atmosenv.2008.01.053.
- 4. Galgamuwa U, Perera L, Bandara S. Developing a general methodology for driving cycle construction: comparison of various established driving cycles in the world to propose a general approach. Journal of Transportation Technologies 2015; 5: 191-203, doi:10.4236/ jtts.2015.54018.
- 5. Hannan M, Azidin F, Mohamed A. Hybrid electric vehicles and their challenges: A review. Renewable and Sustainable Energy Reviews 2014; 29: 135-150, doi:10.1016/j.rser.2013.08.097.
- 6. Keramydas C, Papadopoulos G, Ntziachristos L, Lo T-S, Ng K-L,. Wong H-L A, Wong C.-L. Real-World Measurement of Hybrid Buses’ Fuel Consumption and Pollutant Emissions in a Metropolitan Urban Road Network. Energies 2018; 11: 1-17, 10.3390/en11102569.
- 7. Lajunen A. Fuel economy analysis of conventional and hybrid heavy vehicle combinations over real-world operating routes. Transportation Research Part D 2014; 31: 70–84, 10.1016/j.trd.2014.05.023.
- 8. Laurikko J, Granström R, Haakana A. Realistic estimates of EV range based on extensive laboratory and field tests in Nordic climate conditions. World Electric Vehicle Journal 2013; 6: 192-203, 10.1109/EVS.2013.6914919.
- 9. Lintern M, Chen R, Carroll S, Walsh C. Simulation study on the measured difference in fuel consumption between real-world driving and ECE-15 of a hybrid electric vehicle. Proceedings of the Hybrid and Electric Vehicles Conference (HEVC 2013), 6-7 November 2013, London, UK, 10.1049/cp.2013.1918.
- 10. Lipar P, Strnad I, Česnik M, Maher M. Development of Urban Driving Cycle with GPS Data Post Processing. Promet - Traffic & Transportation 2016; 28(4): 353-364, doi.org/10.7307/ptt.v28i4.1916.
- 11. Mansour C, Haddad M, Zgheib E. Assessing consumption, emissions and costs of electrified vehicles under real driving conditions in a developing country with an inadequate road transport system. Transportation Research Part D: Transport and Environment 2018; 63: 498-513, doi.org/10.1016/j.trd.2018.06.012.
- 12. Millo F, Rolando L, Fuso R, and Zhao J. Development of a new hybrid bus for urban public transportation, Applied Energy 2015; 583-594, doi:10.1016/j.apenergy.2015.03.131.
- 13. Moawad A, Singh G, Hagspiel S, Fellah M, Rousseau A. Impact of real world drive cycles on PHEV fuel efficiency and cost for different power train and battery characteristics. Proceedings of the International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium (EVS24) 2009, Stavanger, Norway. 1-10, 10.3390/wevj3010186.
- 14. Oh Y, Park J, Leeb J, Seo J, Park S. Estimation of CO2 reduction by parallel hard-type power hybridization for gasoline and diesel vehicles. Science of The Total Environment 2018; 59: 2-12, 10.1016/j.scitotenv.2017.03.171, 2017.
- 15. Pawełczyk M, Szumska E. Evaluation of the efficiency of hybrid drive applications in urban transport system on the example of a medium size city. MATEC Web of Conferences 2018, 180: 1-7, https://doi.org/10.1051/matecconf/201818003004.
- 16. Pitanuwat S, Sripakagor A. An Investigation of Fuel Economy Potential of Hybrid Vehicles under Real-World Driving Conditions in Bangkok, Energy Procedia 2015; 79: 1046–1053, doi:10.1016/j.egypro.2015.11.607.
- 17. Russell R, Johnson K, Durbin T, Chen P, Tomic J, Parish R. Emissions, Fuel Economy, and Performance of a Class 8 Conventional and Hybrid Truck. SAE Int. J. Commer. Veh. 2013; 6(2): 545-554, dx.doi.org/10.4271/2013-01-2468.
- 18. Suarez-Bertoa R, Astorga C. Unregulated emissions from light-duty hybrid electric vehicles, Atmospheric Environment 2016: 136: 134-143, 10.1016/j.atmosenv.2016.04.021.
- 19. Wang H, Zhang X, Ouyang M. Energy consumption of electric vehicles based on real-world driving patterns: A case study of Beijing Applied Energy 2015; 157: 710-719, 10.1016/j.apenergy.2015.05.057.
- 20. Woo D, Choe G, Kom J, Lee B, Hur J, Kang G. Comparison of integrated battery chargers for plug-in hybrid electric vehicles: Topology and control. Proceedings of the IEEE International Electric Machines & Drives Conference (IEMDC), 2011, Niagara Falls, Canada, 10,1109/IEMDC.2011.5994791.
- 21. Wu G, Inderbitzin A, Bening C. Total cost of ownership of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments. Energy Policy 2015; 80: 196–214, doi:10.1016/j.enpol.2015.02.004.
- 22. Wu X, Dong J, Lin Z. Cost analysis of plug-in hybrid electric vehicles using GPS-based longitudinal travel data. Energy Policy 2014; 68: 206-217, doi:10.1016/j.enpol.2013.12.054.
- 23. Zahabi S, Miranda-Moreno L, Barla P, Vincent B. Fuel economy of hybrid-electric versus conventional gasoline vehicles in real-world conditions: A case study of cold cities in Quebec, Canada. Transportation Research Part D: Transport and Environment 2014; 32: 184-192, doi:10.1016/j.trd.2014.07.007.
- 24. Zamora R, López Martínez DJ, Loboguerrero Carrasco J, Delgado Vaca J. Development of an in-series hybrid urban bus model and its correlation with on-board testing results. World Electric Vehicle Journal 2013: 6: 405-415, 10.3390/wevj6020405.
- 25. Zito R, Primerano F. Drive cycle development methodology and results. Transport System Centre, Adelaide: University of South Australia, 2005.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e607a880-4ee5-492f-9128-975a8d84a01f