Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article describes an algorithm for selecting a targeted bioassay method. It was proposed to consider the most sensitive method to a certain contamination as the targeted method of bioassay. The selection was made from a "battery of bioassays", which necessarily includes the D. magna mortality test. The rest of the methods for comparing sensitivity were selected situationally. The algorithm was tested on model samples. It was found that mortality tests for D. magna and C. affinis are the most sensitive to contamination with mineral nitrogen compounds. E. coli bioluminescence reduction test is preferred when there is contamination with Cu, phosphates and pyrophosphates. It was shown that the test to reduce the chemotactic reaction of P. caudatum should be used when the aquatic environment is polluted with Cd, Pb, Zn, oil products, organic herbicides imazethapyr and imazamox. The proposed algorithm is universal, but it should be applied when the priority pollutant is known, the effects of which prevail over the action of other compounds in the sample.
Wydawca
Rocznik
Tom
Strony
153--161
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Vyatka State University, 36 Moskovskaya St, Kirov, 610000, Russian Federation
Bibliografia
- 1. Altenburger R., Scholze M., Busch W., Escher B., Jakobs G., Krauss M., Krueger J., Neil P., Ait-Aissa S., Almeida A.C., Seiler T.B., Brion F., Hilscherova K., Hollert H., Novak J., Schlichting R., Serra H., Shao Y., Tyndall A., Tolefsen K.E., Umbuzeiro G., Williams T.D., Kortenkamp A. 2018. Mixture effects in samples of multiple contaminants – An interlaboratory study with manifold bioassays. Environment International, 114, 95–106. DOI: 10.1016/j.envint.2018.02.013
- 2. Animal models in toxicology. Ed. S.C. Gad. Boca Raton, FL: CRC Press, 2016, 1152.
- 3. Blais J.M., Rosen M.R., Smol J.P. 2015. Environmental contaminants: using natural archives to track sources and long-term trends of pollution. Book Series Developments in Paleoenvironmental Research. Netherlands: Springer, 18, 509. DOI: 10.1007/978-94-017-9541-8
- 4. Brennan J.C., Gale R.W., Alvarez D.A., Berninger J.P., Leet J.K., Li Y., Wagner T., Tillitt D.E. 2020. Factors Affecting Sampling Strategies for Design of an Effects-Directed Analysis for Endocrine-Active Chemicals. Environmental toxicology and chemistry, 39(7), 1309–1324. DOI: 10.1002/etc.473
- 5. Castillo G., Schafer L. 2000. Evaluation of a bioassay battery for water toxicity testing: A Chilean experience. Environmental toxicology, 15(4), 331–337. DOI:10.1002/1522-7278(2000)15:4<331::AIDTOX9>3.0.CO;2-E
- 6. Chapman E.E.V., Hemer S.H., Dave G., Murimboh J.D. 2012. Utility of bioassays (lettuce, red clover, red fescue, Microtox, MetSTICK, Hyalella, bait lamina) in ecological risk screening of acid metal (Zn) contaminated soil. Ecotoxicology and environmental safety, 80, 161–171. DOI: 10.1016/j.ecoenv.2012.02.025
- 7. De Baat M.L., Kraak M.H.S., Van der Oost R., De Voogt P., Verdonschot P.F.M. 2019. Effect-based nationwide surface water quality assessment to identify ecotoxicological risks. Water research, 159, 434–443. DOI: 10.1016/j.watres.2019.05.040
- 8. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy – EU Water Framework Directive (as amended on October 20, 2014). 2000. [Internet resource] https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0060 (Accessed: 6.12.2021).
- 9. Environmental Regulatory Document PND F T 14.1:2:3:4.11-04. T.16.1:2:3:3.8-04. 2010. Method for determining the integrated toxicity of surface waters, including marine, ground, drinking, waste waters, water extracts from soils, waste, sewage sludge by changes in bacterial bioluminescence using the Ecolum testsystem. Moscow: Nera-S, 30. (in Russian).
- 10. EPA 821/R-02/012. 2001. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. 5th ed. US Environmental Protection Agency (USEPA). Washington DC, USA.
- 11. EPS 1/RM/11. 1996. Biological test method: Acute lethality test using Daphnia spp. Environment Canada.
- 12. Federal Register 1.39.2007.03221. 2007. Methodology for determining the toxicity of water and water extracts from soils, sewage sludge, and waste by mortality and changes in fertility of Ceriodaphnias. Moscow: Akvaros, 54. (in Russian)
- 13. Federal Register 1.39.2007.03222. 2007. Biological control methods. Method for determining the toxicity of water and water extracts from soils, sewage sludge, waste by mortality and changes in fertility of daphnia. [Internet resource] https://meganorm.ru/Index2/1/4293842/4293842234.htm (Accessed: 6.12.2021). (in Russian)
- 14. Federal Register 1.39.2015.19242. (2015). Environmental Regulatory Document PND F T 16.2:2.2-98. Methodology for determining the toxicity of samples of natural, drinking, domestic and drinking, household waste, treated sewage, waste, thawed, technological water by the express method using the Biotester device. St. Petersburg: SPEKTR-M, 21 p.
- 15. Gupta PK. 2016. Fundamentals of Toxicology: Essential Concepts and Applications. London, England: Academic press LTD-Elsevier science, 398.
- 16. ISO 6341:2012. 2018. Water quality – Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) – Acute toxicity test. https://www.iso.org/standard/54614.html
- 17. Kondakova L.V., Domracheva L.I., Ogorodnikova S.Y., Olkova A.S., Kudryashov N.A., Ashikhmina T.Y. 2014. Bioindication and bioassay reactions of organisms to the action of methylphosphonates and sodium pyrophosphate. Theoretical and Applied Ecology, 4, 63–69.
- 18. Morisseau C., Merzlikin O., Lin A., He G.C., Feng W., Padilla I., Denison M.S., Pessah I.N., Hammock B.D. 2009. Toxicology in the Fast Lane: Application of High-Throughput Bioassays to Detect Modulation of Key Enzymes and Receptors. Environmental health perspectives, 117(12), 1867–1872. DOI: 10.1289/ehp.0900834
- 19. Nikinmaa M. 2014. An introduction to aquatic toxicology. London: Academic press, 252.
- 20. Oberleitner D., Stutz L., Schulz W.G., Bergmann A., Achten C. 2020. Seasonal performance assessment of four riverbank filtration sites by combined non-target and effect-directed analysis. Сhemosphere, 261, 127706. DOI: 10.1016/j.chemosphere.2020.127706
- 21. Olkova A.S, Zimonina N.M., Lyalina E.I., Bobretsova V.R. 2017. Diagnostics of local pollution of urbanozem in the areas of petrol stations. Theoretical and Applied Ecology, 1, 56–62.
- 22. Olkova A.S. 2020. Development of a strategy for bioassay of aquatic environments taking into account the multifactority of response reactions of test organisms. Dissertation of Doctor of Biological Sciences, Vladimir, 358.
- 23. Olkova A.S., Berezin G.I. 2019. Study on the sensitivity of certified bioassays to water pollution with modern herbicides: model experiments. Water and ecology: problems and solutions, 24, 2(78), 111–119. DOI: 10.23968/2305-3488.2019.24.2.111-119
- 24. Olkova A.S., Machanova E.V. 2018. Selection of bioassay for ecological research of water, polluted by mineral nitrogen forms. Water and ecology: problems and solutions, 4(76), 70–81. DOI: 10.23968/2305-3488.2018.23.4.70-81
- 25. Pandard P., Devillers J., Charissou A.M., Poulsen V., Jourdain M.J., Ferard J.F., Grand C., Bispo A. 2006. Selecting a battery of bioassays for ecotoxicological characterization of wastes. Science of the total environment, 363(1–3), 114–125. DOI: 10.1016/j.scitotenv.2005.12.016
- 26. Pandey L.K., Lavoie I., Morin S., Depuydt S., Lyu J., Lee H., Jung J., Yeom D.H., Han T., Park J. 2019. Towards a multi-bioassay-based index for toxicity assessment of fluvial waters. Environmental monitoring and assessment, 191(2), 112. DOI: 10.1007/s10661-019-7234-5
- 27. Ramezanpoor M., Salehian H., Babanezhad E., Rezvani M. 2021. The Leaching of Atrazine and Plant Species Sensitivity to Atrazine using Bioassays and Chemical Analyses. Soil & Sediment contamination. DOI:10.1080/15320383.2021.1963667
- 28. Schuijt L.M., Peng F.J., van den Berg S.J.P., Dingemans M.M.L., Van den Brink P.J. 2021. (Eco) toxicological tests for assessing impacts of chemical stress to aquatic ecosystems: Facts, challenges, and future. Science of the total environment, 795, 148776. DOI: 10.1016/j.scitotenv.2021.148776
- 29. van den Berg S.J.P., Maltby L., Sinclair T., Liang R.Y., van den Brink P.J. 2021. Cross-species extrapolation of chemical sensitivity. Science of the total environment, 753, 141800. DOI: 10.1016/j.scitotenv.2020.141800
- 30. Wieczerzak M., Namiesnik J., Kudlak B. 2016. Bioassays as one of the Green Chemistry tools for assessing environmental quality: A review. Environment international. 94, 341–361. DOI: 10.1016/j.envint.2016.05.017
- 31. Zhang C., Zhang S., Zhu L.S., Wang J.H., Wang J., Zhou T. 2017. The acute toxic effects of 1-alkyl-3-methylimidazolium nitrate ionic liquids on Chlorella vulgaris and Daphnia magna. Environmental pollution, 229, 887–895. DOI: 10.1016/j.envpol.2017.07.055
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e60667f4-faa7-490a-a6c3-5cf278146b49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.