PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrochemical Corrosion Evaluation of Copper-Alloyed Ductile Cast Irons

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work, different Cu-alloyed model ductile irons with ferritic (0%Cu-0.09%Mn), mixed ferritic-pearlitic (0.38%Cu-0.40%Mn) and pearlitic (0.69%Cu-0.63%Mn) microstructure were produced and analyzed in terms of their electrochemical corrosion behavior in a 3.5wt.%NaCl aqueous solution containing naturally dissolved oxygen at room temperature (25°C). The remaining elements such as Si and Mg were kept at balanced levels in an attempt to minimize variations in graphite size and distribution among different samples. The corrosion resistance was evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization. Microstructure analysis of the cast alloys confirmed similarity in the graphite morphology among the different cast samples and the expected variations in the metallic matrix. In the absence of passivation, it was found that the addition of copper led to an increase in corrosion resistance, which could be attested by higher values polarization resistance and corrosion potential.
Rocznik
Strony
26--30
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
autor
  • Pontifical Catholic University of Minas Gerais, Brazil
autor
  • Pontifical Catholic University of Minas Gerais, Brazil
autor
  • Pontifical Catholic University of Minas Gerais, Brazil
autor
  • Pontifical Catholic University of Minas Gerais, Brazil
Bibliografia
  • [1] Guo, X., Stefanescu, D.M., Chuzhoy, L. & Pershing, M.A. (1997). A mechanical properties model for ductile iron. Transactions of the American Foundrymen’s Society. 105, 47-54.
  • [2] Riposan, I., Chisamera, M. & Stan, S. (2010). Performance of heavy ductile iron castings for windmills. China Foundry. 7(2), 163-170.
  • [3] Peng, J.Z., Liu, L.X. & Yang, Z.X. (2010). Quality Control Measures for Heavy Ductile Iron Hub of Wind Turbine Generator. Foundry. 59, 969-972.
  • [4] Al-Hashem, A., Abdullah, A. & Riad W. (2001). Cavitation corrosion of nodular cast iron (NCI) in seawater Microstructural effects. Materials Characterization. 47(5), 383-388. DOI: 10.1016/S1044-5803(02)00185-7.
  • [5] Song, Y., Jiang, G., Chen, Y., Zhao, P. & Tian, Y. (2017). Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments. Scientific Reports. 7, 6865. DOI: 10.1038/s41598-017-07245-1.
  • [6] Yürektürk, Y. & Baydoğan, M. (2018). Characterization of ferritic ductile iron subjected to successive aluminizing and austempering. Surface and Coatings Technology. 347, 142-149. DOI: 10.1016/j.surfcoat.2018.04.083.
  • [7] Hsu, C.-H. & Chen, M.-Li. (2010). Corrosion behavior of nickel alloyed and austempered ductile irons in 3.5% sodium chloride. Corrosion Science. 52(9), 2945-2949. DOI: 10.1016/j.corsci.2010.05.006.
  • [8] Hsu, C.-H. & Lin, K.-T. (2014). Effects of Copper and Austempering on Corrosion Behavior of Ductile Iron in 3.5 Pct Sodium Chloride. Metallurgical and Materials Transactions A. 45(3), 1517-1523. DOI: 10.1007/s11661-013-2059-2.
  • [9] Han, Ch.F., Wang, Q.Q., Sun, Y.F. & Li, J. (2015). Effects of Molybdenum on the Wear Resistance and Corrosion Resistance of Carbidic Austempered Ductile Iron. Metallography, Microstructure, and Analysis. 4(4) 298-304. DOI: 10.1007/s13632-015-0215-3.
  • [10] Medyński, D. & Janus, A. (2016). Effect of Chemical Composition on Structure and Corrosion Resistance of Ni-Mn-Cu Cast Iron. Archives of Foundry Engineering. 16(3), 59-62. DOI: 10.1515/afe-2016-0050.
  • [11] Ige, O.O,. Olawale, O.J., Oluwasegun, K.M., Aribo, S., Obadele, B.A. & Olubambi, P.A. (2017). Procedia Engineering. 7, 579-583. DOI: 10.1016/j.promfg.2016.12. 084.
  • [12] Boudot, A., Gerval, V., Oquab, D., Lacaze, J. & Santos, H. (1997). The role of manganese and copper in the eutectoid transformation of spheroidal graphite cast iron. Metallurgical and Materials Transactions A. 28(10), 2015-2025. DOI: 10.1007/s11661-997-0158-7.
  • [13] Sancy, M., Gourbeyre, Y., Sutter, E.M.M. & Tribollet, B. (2010). Mechanism of corrosion of cast iron covered by aged corrosion products: Application of electrochemical impedance spectrometry. Corrosion Science. 52(4), 1222-1227. DOI: 10.1016/j.corsci.2009.12.026.
  • [14] Arenas, M.A., Niklas, A., Conde, A., Méndez, S., Sertucha, J. & Damboronea, J.J. (2014). Comportamiento frente a la corrosión de fundiciones con grafito laminar y esferoidal parcialmente modificadas con silicio en NaCl 0,03 M. Revista de Metalurgia. 50(4), e032. DOI: 10.3989/ revmetalm.032.
  • [15] Yamamoto, A. Ashiura, T. & Kamisaka, E. (1986). Mechanism of improvement on corrosion resistance by copper addition to ferritic stainless steels. Corrosion Engineering. 35(8), 448-454.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e60665d8-a0d7-4ac3-bc2c-de8f79b42ad0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.