PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coefficient Estimate of bi-Bazilevič Functions Associated with Fractional q-calculus Operators

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we introduce and investigate two new subclasses of the function class ∑ of bi-univalent functions defined in the open unit disk, which are associated with fractional q-calculus operators, satisfying subordinate conditions. Furthermore, we find estimates on the Taylor-Maclaurin coefficients |a2| and |a3| for functions in these new subclasses. Several (known or new) consequences of the results are also pointed out.
Wydawca
Rocznik
Strony
49--62
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
  • School of Advanced Sciences, VIT University, Vellore-632014, Tamilnadu, India
autor
  • School of Computer Sciences & Engineering, VIT University, Vellore-632014, Tamilnadu, India
  • Department of HEAS (Mathematics), Rajasthan Technical University, Kota-324010, Rajasthan, India
Bibliografia
  • [1] Yang XJ, Baleanu D, Srivastava HM. Local Fractional Integral Transforms and Their Applications, Elsevier, 2015.
  • [2] Ortigueira MD. Fractional Calculus for Scientists and Engineers. Springer, New York, 2011. ISBN-13: 978-9400707467, ISBN-10: 9400707460.
  • [3] Sabatier J, Agrawal OP, Tenreiro Machado JA. Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering, Springer, New York, 2007. ISBN-13: 978-1402060410, ISBN-10: 1402060416.
  • [4] Hilfer R. Applications of Fractional Calculus in Physics. Word Scientific Press, Singapore, 2000. ISBN: 978-981-02-3457-7, ISBN: 978-981-4496-20-9.
  • [5] Srivastava HM, Owa S. Current Topics in Analytic Function Theory. World Scientific Publishing Company, Singapore, New Jersey, London and Hongkong, 1992. ISBN: 978-981-02-0932-2.
  • [6] Pu YF, Zhou JL, Yuan X. Fractional differential mask: A fractional differential-based approach for multiscale texture enhancement. IEEE Trans. Image Process. 2010; 19 (2): 491-511. doi: 10.1109/TIP.2009.2035980.
  • [7] Pu YF, Yuan X, Liao K, Chen ZL, Zhou JL. Five numerical algorithms of fractional calculus applied in modern signal analyzing and processing. Journal of Sichuan University. 2005; 37: 118-124.
  • [8] Maione G, Lino P. New tuning rules for fractional PIα controllers. Nonlinear Dynamics. 2007; 49: 251-257. doi: 10.1007/s11071-006-9125-x.
  • [9] Bohannan GW. Analog fractional order controller in temperature and motor control applications. J. Vib. Control. 2008; 14 (9-10): 1487-1498. doi: 10.1177/1077546307087435.
  • [10] Purohit SD. Solutions of fractional partial differential equations of quantum mechanics. Adva. Appl. Math. Mech. 2013; 5 (5): 639-651. doi: 10.4208/aamm.12-m1298.
  • [11] Purohit SD, Kalla SL. On fractional partial differential equations related to quantum mechanics. J. Phys. A Math. Theor. 2011; 44 (4): Article ID: 045202. URL http://stacks.iop.org/1751-8121/44/i=4/a=045202.
  • [12] Yang XJ, Baleanu D, Srivastava HM. Local fractional similarity solution for the diffusion equation defined on Cantor sets. Appl. Math. Lett. 2015; 47: 54-60. URL http://dx.doi.org/10.1016/j.am1.2015.02.024.
  • [13] Yang XJ, Machado JT, Hristov J. Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow. Nonlinear Dyn. 2015; 80: 1661-1664. doi: 10.1007/s11071-015-2085-2.
  • [14] Yang XJ, Srivastava HM, Hi JH, Baleanu D. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys. Lett. A. 2013; 377 (28): 1696-1700. URL http://dx.doi.org/10.1016/j.physleta.2013.04.012.
  • [15] Jumarie G. Fourier’s transform of fractional order via Mittag-Leffler function and modified Riemann-Liouville derivative. J. Appl. Math. Inf. 2008; 26 (5-6): 1101-1121. URL http://www.kcam.biz.
  • [16] Sharma JB, Sharma KK, Vineet Sahula. Digital image dual watermarking using self-fractional Fourier functions, bivariate empirical mode decomposition and error correcting code. Journal of Optics. 2013; 42 (3): 214-227. doi: 10.1007/s12596-013-0125-1.
  • [17] Sharma JB, Sharma KK, Vineet Sahula. Hybrid image fusion using self-fractional Furier functions and multivariate empirical mode decomposition. Signal Processing. 2014; 100: 146-159. doi: 10.1016/j.sigpro.2014.01.001.
  • [18] Pu YF, Zhou JL, Zhang Y, Zhang N, Huang G, Siarry P. Fractional extreme value adaptive training method: fractional steepest descent approach. IEEE Trans. On Neural Network and Learning Systems. 2015; 26 (4): 653-662.
  • [19] Zhang Y, Wang S, Ji G, Dong ZC. Genetic pattern search and its application to brain image classification. Math. Probl. Engg. 2013; Article ID 580876: 1-8.
  • [20] Zhang Y, Wang S, Sun Yi, Ji G, Phillips P, Dong ZC. Binary structuring elements decompositionbased on an improved recursive Dilation-Union modeland RSAPSO. Math. Probl. Engg. 2014; Article ID 272496: 1-12. Available from: http://dx.doi.org/10.1155/2014/272496.
  • [21] Purohit SD, Raina RK. Certain subclass of analytic functions associated with fractional q-calculus operators. Math. Scand. 2011; 109: 55-70. doi: 10.7146/math.scand.a-15177.
  • [22] Purohit SD, Raina RK. Fractional q-calculus and certain subclass of univalent analytic functions. Mathematica (Cluj). 2013; 55 (78) (1): 62-74.
  • [23] Purohit SD, Raina RK. On a subclass of p-valent analytic functions involving fractional q-calculus operators. Kuwait J. Sci. 2014; 42 (1): 1-15.
  • [24] Purohit SD. A new class of multivalently analytic functions associated with fractional q-calculus operators. Fractional Differ. Calc. 2012; 2 (2): 129-138. doi: 10.7153/fdc-02-10.
  • [25] Selvakumaran KA, Purohit SD. Aydin Secer and Mustafa Bayram, Convexity of certain q-integral operators of p-valent functions. Abstra. Appl. Anal. 2014; Article ID: 925902: 1-7. doi: 10.1155/2014/925902.
  • [26] Selvakumaran KA, Purohit SD, Aydin Secer. Majorization for a class of analytic functions defined by q-differentiation. Math. Probl. Engg. 2014; Article ID: 653917: 1-5. URL http://dx.doi.org/10.1155/2014/653917.
  • [27] Gasper G, Rahman M. Basic Hypergeometric Series. Cambridge University Press, Cambridge, 1990.
  • [28] Ma WC, Minda D. A unified treatment of some special classes of functions, in: Proceedings of the Conference on Complex Analysis, Tianjin, 1992, 157-169. Conf. Proc. Lecture Notes Anal. 1. Int. Press, Cambridge, MA, 1994.
  • [29] Singh R. On Bazilevic functions. Proc. Amer. Math. Soc. 1973; 28: 261-271. doi: 10.2307/2039275.
  • [30] Srivastava HM, Mishra AK, Gochhayat P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010; 23: 1188-1192. doi: 10.1016/j.aml.2010.05.009.
  • [31] Brannan DA, Clunie J, Kirwan WE. Coefficient estimates for a class of star-like functions. Canad. J. Math. 1970; 22: 476-485.
  • [32] Brannan DA, Clunie J. Aspects of Contemporary Complex Analysis. Academic Press, London, 1980. URL http://trove.nla.gov.au/version/44965064.
  • [33] Brannan DA, Taha TS. On some classes of bi-univalent functions. Studia Univ. Babeş-Bolyai Math. 1986; 31 (2): 70—77.
  • [34] Lewin M. On a coefficient problem for bi-univalent functions. Proc. Amer. Math. Soc. 1967; 18: 63-68.
  • [35] Netanyahu E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in z < 1. Arch. Rational Mech. Anal. 1969; 32: 100-112.
  • [36] Taha TS. Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.
  • [37] Frasin BA, Aouf MK. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011; 24: 1569-1573. doi: 10.1016/j.am1.2011.03.048.
  • [38] Hayami T, Owa S. Coefficient bounds for bi-univalent functions. Pan Amer. Math. J. 2012; 22 (4): 15-26.
  • [39] Li X.-F, Wang A.-P. Two new subclasses of bi-univalent functions. Internat. Math. Forum. 2012; 7 (30): 1495-1504.
  • [40] Panigarhi T, Murugusundaramoorthy G. Coefficient bounds for Bi- univalent functions analytic functions associated with Hohlov operator. Proc. Jangjeon Math. Soc. 2013; 16 (1): 91-100. doi: 10.1155/2014/693908.
  • [41] Srivastava HM, Murugusundaramoorthy G, Magesh N. Certain subclasses of bi-univalent functions associated with the Hohlov operator. Global Journal of Mathematical Analysis. 2013; 1 (2): 67—73. doi: 10.14419/gjma.v1i2.937.
  • [42] Xu QH, Gui YC, Srivastava HM. Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Appl. Math. Lett. 2012; 25: 990-994. doi: 10.1186/1029-242X-2013-317.
  • [43] Xu QH, Xiao HG, Srivastava HM. A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Appl. Math. Comput. 2012; 218: 11461-11465. doi: 10.1016/j.amc.2012.05.034.
  • [44] Deniz E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. Journal of Classical Analysis. 2013; 2 (l): 49-60. doi: 10.7153/jca-02-05.
  • [45] Pommerenke C. Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.
  • [46] Rogosinski W. On the coefficients of subordinate functions. Proc. London Math. Soc. (Ser. 2) 1943; 48: 48-82.
  • [47] Duren PL. Univalent Functions. Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983. ISBN: 978-0-387-90795-6.
  • [48] Srivastava HM. Some Fox-Wright generalized hypergeometric functions and associated families of convolution operators. Appl. Anal. Discrete Math. 2007; 1 (1): 56-71. doi: 10.2298/AADM0701056S.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6040d26-f94f-4003-a8c5-572ca6eb8f20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.