PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance analysis of a lithium-ion battery of an electric vehicle under various driving conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Conventional fuels are the primary source of pollution. Switching towards clean energy becomes increasingly necessary for sustainable development. Electric vehicles are the most suitable alternative for the future of the automobile industry. The battery, being the power source, is the critical element of electric vehicles. However, its charging and discharging rates have always been a question. The discharge rate depends upon various factors such as vehicle load, temperature gradient, surface inclination, terrain, tyre pressure, and vehicle speed. In this work, a 20 Ah, 13S-8P configured lithium-ion battery, developed specifically for a supermileage custom vehicle, is used for experimentation. The abovementioned factors have been analyzed to check the vehicle’s overall performance in different operating conditions, and their effects have been investigated against the battery’s discharge rate. It has been observed that the discharge rate remains unaffected by the considered temperature difference. However, overheating the battery results in thermal runaway, damaging and reducing its life. Increasing the number of brakes to 15, the impact on the discharge rate is marginal; however, if the number of brakes increases beyond 21, a doubling trend in voltage drops was observed. Thus, a smoother drive at a slow-varying velocity is preferred. Experiments for different load conditions and varying terrains show a rise in discharge with increasing load, low discharge for concrete, and the largest discharge for rocky terrain.
Rocznik
Strony
143--160
Opis fizyczny
Bibliogr. 54 poz., rys.
Twórcy
  • Duke University, Durham, USA
  • Indira Gandhi Delhi Technical University for Women, Mechanical and Automation Engineering, New Delhi, India
  • Indira Gandhi Delhi Technical University for Women, Mechanical and Automation Engineering, New Delhi, India
  • Indira Gandhi Delhi Technical University for Women, Mechanical and Automation Engineering, New Delhi, India
autor
  • Maulana Azad National Urdu University, Mechanical Engineering, Cuttack, Odisha, India
Bibliografia
  • [1] Abas N., Kalair A., Khan N.: Review of fossil fuels and future energy technologies. Futures 69(2015), 31–49. doi: 10.1016/j.futures.2015.03.003
  • [2] Dudley B.: BP Statistical Review of World Energy 2019 (68th Edn.). BP p.l.c., London 2019. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf (accessed 8 Dec. 2022).
  • [3] Siram J., Sahoo N., Saha U.K.: Changing landscape of India’s renewable energy and the contribution of wind energy. Clean. Eng. Technol. 8(2022), 100506. doi:10.1016/j.clet.2022.100506
  • [4] Welsby D., Price P., Pye S., Ekins P.: Unextractable fossil fuels in a 1.5◦C world. Nature 597(2021), 230–234. doi: 10.1038/s41586-021-03821-8
  • [5] Choudhary P., Sachar S., Khurana T., Jain U., Parvez Y., Soni M.: Energy analysis of single cylinder 4-stroke diesel engine using diesel and diesel-biodiesel blends. Int. J. Appl. Eng. Res. 13(2018), 12, 10779–10788.
  • [6] Kanaujia A., Bhati M., Lakshmanan S., Nishad S. N., Bhattacharya S.: Air Pollution in India: A Critical Assessment and Suggestive Pathways for Clean Air. A project on Studies on Contemporary Challenges. CSIR-NIScPR Discuss. Pap. Ser., New Delhi 2022.
  • [7] Wallington T.J., Anderson J.E., Dolan R.H., Winkler S.L.: Vehicle emissions and urban air quality: 60 years of progress. Atmosphere 13(2022), 5, 650. doi: 10.3390/atmos13050650
  • [8] Jain U., Khurana T., Sachar S., Choudhary P., Parvez Y.: Performance characteristics and energy analysis of a 4-stroke single cylinder diesel engine using diesel and diesel-kerosene blends. Int. J. Res. Anal. Rev. 5(2018), 3, 194–203.
  • [9] Srivastava S., Chaubey H., Parvez Y.: Performance evaluation of CI engine using diesel, diesel-biodiesel blends and diesel-kerosene blends through exergy analysis. IOP Conf. Ser.-Mater. Sci. 691(2019), 1. doi: 10.1088/1757-899X/691/1/012066
  • [10] Kim T.H., Park J.S., Chang S.K., Choi S., Ryu J.H., Song H.K.: the current move of lithium ion batteries towards the next phase. Adv. Energ. Mater. 2(2012), 7, 860–872. doi: 10.1002/aenm.201200028
  • [11] Brown S., Pyke D., Steenhof P.: Electric vehicles: The role and importance of standards in an emerging market. Energ. Policy 38(2010), 7, 3797–3806. doi: 10.1016/j.enpol.2010.02.059
  • [12] Botsford C., Szczepanek A.: Fast charging vs. slow charging: Pros and cons for the new age of electric vehicles. EVS24 Int. Battery, Hybrid, Fuel Cell Electric Vehicle Symp, Stavanger, May 13–16, 2009.
  • [13] Kalyan R., Murali V., Pitchaimuthu R.: Coordinate control of grid power, battery soc and LVRT protection in single VSC tied DFIG. Distrib. Gener. Alternat. Energ. J.37(2022), 587–608. doi: 10.13052/Dgaej2156-3306.37310
  • [14] Revankar S.T.: Chemical energy storage. In: Storage and Hybridization of Nuclear Energy: Techno-economic Integration of Renewable and Nuclear Energy (H. Bindra, S. Revankar, Eds.). Elsevier, 2019, 177–227. doi: 10.1016/b978-0-12-813975-2.00006-5
  • [15] Shastri S., Parvez Y., Chauhan N.R.: Wireless power transfer system for scorbot Er4u robotic arm. Int. J. Power Energ. Sys. 40(2020), 3, 103–111. doi: 10.2316/J.2020.203-0044
  • [16] Harks P.P.: Characterization and development of high energy density Li-ion batteries. TU Delft, 2019. doi: 10.4233/uuid:cab44efd-8a4c-4b4d-8168-bd64738adb64 (accessed 8 Dec. 2022).
  • [17] Salunke A.D., Chamola S., Mathieson A., Boruah B.D., Volder M.D., Ahmad S.: Photo-rechargeable Li-Ion batteries: device configurations, mechanisms, and materials. ACS Appl. Energ. Mater. 5(2022), 7, 7891–7912.
  • [18] Whittingham M.S.: Introduction: Batteries. Chem. Rev. 114(2014), 23, 11413. doi:10.1021/cr500639y
  • [19] Mekonnen Y., Sundararajan A., Sarwat A.I.: A review of cathode and anode materials for lithium-ion batteries. Southeast Conf. 2016, Norfolk, (2016), 1–6. doi:10.1109/secon.2016.7506639
  • [20] Oswal M., Paul J., Zhao R.: A Comparative Study of Lithium-Ion Batteries. Univ. of Southern California, 2010.
  • [21] Situ L.: Electric vehicle development: The past, present & future. In: Proc. 3rd Int. Conf. on Power Electronics Systems and Applications (PESA), 2009, 1–3.
  • [22] Koshika K., Suzuki H.: Performance survey for Li-Ion battery in a hybrid vehicle with 105,000 km driving. In: Abstr. ECS Meet. MA2020-02, 2020, 1051. doi:10.1149/MA2020-0261051mtgabs
  • [23] Husain M.A., Rajput R., Gupta M.K., Tabrez M., Ahmad M.W., Bakhsh F.I.: Design and implementation of different drive topologies for control of induction motor for electric vehicle application. Distrib. Gen. Altern. Energ. J. 37(2022), 4, 999–1026. doi: 10.13052/dgaej2156-3306.3746
  • [24] Miao Y., Hynan P., Jouanne A.V., Yokochi A.: Current Li-Ion battery technologies in electric vehicles and opportunities for advancements. Energies 12(2019), 6, 1074.doi: 10.3390/en12061074
  • [25] Wang C., Chen Y., Zhang Q., Zhu J.: Dynamic early recognition of abnormal lithiumion batteries before capacity drops using self-adaptive quantum clustering. Appl. Energ. 336(2023), 120841. doi: 10.1016/j.apenergy.2023.120841
  • [26] Goodenough J., Kim Y.: Challenges for rechargeable Li batteries. Chem. Mater.22(2010), 3, 58703. doi: 10.1021/cm901452z
  • [27] Huang Z., Liu J., Zhai H., Wang O.: Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions. Energy 233(2021), 121103. doi:10.1016/j.energy.2021.121103
  • [28] Dar U., Siddiqui A.S., Bakhsh F.I.: Design and control of an off board battery charger for electric vehicles. Distrib. Gen. Altern. Energ. J. 37(2022), 4, 959–978. doi: 10.13052/dgaej2156-3306.3744
  • [29] Seruga D., Gosar A., Sweeney C.A., Jaguemont J., Mierlo J.V., Nagode M.: Continuous modelling of cyclic ageing for lithium-ion batteries. Energy B 215B(2021),119079. doi: 10.1016/j.energy.2020.119079
  • [30] Ge M.F., Liu Y., Jiang X., Liu. J.: A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries. Measurement 174(2021),109057. doi: 10.1016/j.measurement.2021.109057
  • [31] Chandran V., Patil C.K., Karthick A., Ganeshaperumal D., Rahim R., Ghosh A.: State of charge estimation of lithium-ion battery for electric vehicles using machine learning algorithms. World Elect. Veh. J. 12(2021), 38, 1–17. doi: 10.3390/wevj12010038
  • [32] García A., Serrano J.M., Boggio S.M., Golke D.: Energy assessment of the ageing phenomenon in Li-Ion batteries and its impact on the vehicle range efficiency. Energ. Convers. Manage. 276(2023), 116530. doi: 10.1016/j.enconman.2022.116530
  • [33] Xiong R., Pan Y., Shen W., Li H., Sun F.: Lithium-ion battery aging mechanisms Renew. Sust. Energ. Rev. 131(2020), 110048. doi: 10.1016/j.rser.2020.110048
  • [34] Canteros M.L., Polansky J.: Study of the heat pump for a passenger electric vehicle based on refrigerant R744. Arch. Thermodyn. 43(2022), 2, 17–36. doi: 10.24425/ather.2022.141976
  • [35] Chen T., Jin Y., Lv H., Yang A., Liu M., Chen B., Chen Q.: Applications of lithiumion batteries in grid-scale energy storage systems. T. of Tianjin Univ. 26(2020), 208–217. doi: 10.1007/s12209-020-00236-w
  • [36] Singh D., Chaubey H., Parvez Y., Monga A., Srivastava S.: Performance improvement of solar PV module through hybrid cooling system with thermoelectric coolers and phase change material. Sol. Energy 241(2022), 538–552. doi: 10.1016/j.solener.2022.06.028
  • [37] Zhou Y., Wang F., Xin T., Wang X., Liu Y., Cong L.: Discussion on international standards related to testing and evaluation of lithium battery energy storage. Distrib. Gen. Altern. Energ. J. 37(2022), 3, 435–448. doi: 10.13052/dgaej2156-3306.3732
  • [38] Lane B.W., Betts N.M., Hartman D., Carley S., Krause R.M., Graham J.D.: Government promotion of the electric car: Risk management or industrial policy?. Eur.J. Risk Regul. (EJRR) 4(2013), 2, 227–245.
  • [39] Valle J.A.D., Viera J.C., Ansean D., Branas C., Luque P., Mantaras D.A., Pulido Y.F.: Design and validation of a tool for prognosis of the energy consumption and performance in electric vehicles. Transp. Res. Proc. 33(2018), 35–42. doi: 10.1016/j.trpro.2018.10.073
  • [40] Planchard D.: Solidworks 2018 Reference Guide. (2018). https://files.solidworks.com/partners/pdfs/referenceguide.pdf (accessed 8 Dec. 2022).
  • [41] Lu Z., Yu X.L., Wei L.C., Cao F., Zhang L.Y., Meng X.Z., Jin L.W.: A comprehensive experimental study on temperature-dependent performance of lithium-ion battery. Appl. Therm. Eng. 158(2019), 113800. doi: 10.1016/j.applthermaleng.2019.113800
  • [42] Bandhauer T.M., Garimella S., Fuller T.F.: A critical review of thermal issues in lithium-ion batteries. J. Electrochem. Soc. 158(2011), 3, R1–R5. doi: 10.1149/1.3515880
  • [43] Kong J., Yang F., Zhang X., Pan E., Peng Z., Wang D.: Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries. Energy 223(2021), 120114. doi: 10.1016/j.energy.2021.120114
  • [44] Ma S., Jiang M., Tao P., Song C., Wu J., Wang J., Shang W.: Temperature effect and thermal impact in lithium-ion batteries: A review. Pr. Nat. Sci. Mater. Int. 28(2018), 6, 653–666. doi: 10.1016/j.pnsc.2018.11.002
  • [45] Liu G., Ouyang M., Lu L., Li J., Han X.: Analysis of the heat generation of lithiumion battery during charging and discharging considering different influencing factors. J. Therm. Anal. Calorim. 116(2014), 1001–1010. doi: 10.1007/s10973-013-3599-9
  • [46] Miri I., Fotouhi A., Ewin N.: Electric vehicle energy consumption modelling and estimation – A case study. Int. J. Energ. Res. 45(2020), 501–520. doi: 10.1002/er.5700
  • [47] Han J., Vahidi A., Sciarretta A.: Fundamentals of energy efficient driving for combustion engine and electric vehicles: An optimal control perspective. Automatica 103(2019), 558–572. doi: 10.1016/j.automatica.2019.02.031
  • [48] Gao Y., Chen L., Ehsani M.: Investigation of the effectiveness of regenerative braking for EV and HEV. SAE Transactions 108(1999), 3184–190. doi: 10.4271/1999-01-2910
  • [49] Cikanek S.R., Bailey K.E.: Regenerative braking system for a hybrid electric vehicle. In: Proc. 2002 Am. Control Conf. (ACC) (IEEE Cat. No. CH37301), 4(2002), 3129–3134. doi: 10.1109/ACC.2002.1025270
  • [50] Yoong M., Gan Y., Gan G., Leong C., Phuan Z., Cheah B., Chew K.: Studies of regenerative braking in electric vehicle. IEEE Conf. on Sustainable Utilization and Development in Engineering and Technology, Kuala Lumpur, 2010, 40–45. doi:10.1109/student.2010.5686984
  • [51] Fatima N., Mustafa J.: Production of electricity by the method of road power generation. Int. J. Adv. Elect. Electron. Eng. 1(2016), 1, 9–14.
  • [52] Raj A., Verma A., Joshi H., Gupta M., Mustafa J.: Generation of electricity by crank mechanism method in railway track. In: Proc. Int. Conf. on Computational and Experimental Methods in Mechanical Engineering (ICCEMME 2017), Greater Noida 8–9 Dec. 2017, 326–330.
  • [53] Morcos M.M., Dillman N.G., Mersman C.R.: Battery chargers for electric vehicles. IEEE Power Eng. Rev. 20(2000), 11, 8–11. doi: 10.1109/39.883280.
  • [54] Michael C., Keith P., Walter V.: Performance of a Battery Electric Vehicle in the Cold Climate and Hilly Terrain of Vermont-Final Report. Transp. Res. Cent. Res. Rep. 258, Univ. of Vermont, Burlington 2008. https://rosap.ntl.bts.gov/view/dot/34424/dot_34424_DS1.pdf (accessed 8 Dec. 2022).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6039c5e-ae65-4a72-a0dd-b686d6492eea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.