PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation the effect addition of nano Al2O3 on microstructure of Yttria tetragonal Zirconia polycrystalline ceramic

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This research aimed to prepare tetragonal zirconia polycrystals powder by coprecipitation method and study effects of addition of different amounts of nano Al2O3 (1, 2 and 4) wt.% on its microstructure and mechanical properties of (5Y-TZP) composite. Design/methodology/approach: The powder was uniaxial pressed at a pressure of 150 MPa and held for 60 s, and sintered at the 1500°C, held for two hours and then cooling down at 5°C/min to room temperature. Microhardness and fracture toughness tests were utilized to evaluate the mechanical properties of yttria tetragonal zirconia polycrystal composite. The microstructure has been observed using field emission scanning electron microscopy(FESEM). Findings: The results showed an addition of nano Al2O3 has a great influence on hardness and microstructure, the increase in Vicker's microhardness of composite samples with the increase in the nano Al2O3 wt.% and microstructure were characterized with homogeneous zirconia distribution, grain growth destruction with the increasing percentage of nano Al2O3. The most important influence is the enhancing of the densification process as the porosity decreased. The highest hardness and maximum fracture toughness were recorded at 4 wt.% nano Al2O3. Research limitations/implications: Ceramic matrix composites are developed to overcome the brittleness of ZrO2 and the low toughness of alumina by formation, a large difference of elastic behavior between matrix and particles(dispersion phase )which disturbs the stress field as a dislocation comes near a particle. Practical implications: Zirconia has mechanical properties similar to those of stainless steel. Yttria-stabilized tetragonal Zirconia (Y-TZP) is growing used in dentistry due to its good mechanical properties such as hardness and fracture toughness. Thus, controlling of microstructure by adding nanoalumina plays an important role in enhancing these properties. Originality/value: Study the adding bitty percentage from nano alumina on microstructure and mechanical properties of (5Y-TZP) ceramic.
Rocznik
Strony
49--55
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
  • Department of Materials Engineering, Faculty of Engineering, University of Kufa, Najaf, Iraq
Bibliografia
  • [1] G. Elsner, H. Hoven, G. Kessler, P. Wellner, Ceramic and ceramic composites: materialographic preparation, Elsevier Science, 1999.
  • [2] G. Petzow, Metallographic Etching, 2nd ed., ASM International, 1999.
  • [3] M.Fornabaio, P. Palmero, R.Traverso, Zirconia-based composites for biomedical applications: Role of second phases on composition, microstructure and zirconia transformability, Journal of the European Ceramic Society 35/14 (2015) 4039-4049. DOI: https://doi.org/10.1016/j.jeurceramsoc.2015.04.027
  • [4] N. Valentina, Alumina-zirconia composites: elaboration and characterization, in view of the orthopedic application, PhD thesis, Department of Materials Science and Chemical Engineering, Turin Polytechnic, 2010. [5] J. Prakash, D. Kumar, K. Mohanta, Mechanical behavior of Alumina-Zirconia composites by slurry method, International Journal of Engineering Science and Technology 3 (2011) 1359-1367.
  • [6] H. Mills, S. Blackburn, Zirconia toughened alumina by hydro-thermal processing, Journal of the European Ceramic Society 20/8 (2000) 1085-1090. DOI: https://doi.org/10.1016/S0955-2219(99)00274-5
  • [7] T. Suzuki, Y. Sakka, K. Nakano, H. Hiraga, Effect of ultrasonication on colloidal dispersions of Al2O3 and ZrO2 in pH-controlled suspensions, JIM 39 (1998) 682- 689. DOI: https://doi.org/10.2320/matertrans1989.39.689
  • [8] P. Rana, K. Pratihar, S. Bhattacharyya, Powder processing and densification behavior of alumina–high zirconia nanocomposites using chloride precursors, Journal of Materials Processing Technology 190/1-3 (2007) 350-357. DOI: https://doi.org/10.1016/j.jmatprotec.2007.02.009
  • [9] B. Al-Amleh, K. Lyons, M. Swain, Clinical trials in zirconia: a systematic review, Journal of Oral Rehabilitation 37/8 (2010) 641-652. DOI: https://doi.org/10.1111/j.1365-2842.2010.02094.x
  • [10] O. Aldryab, The effect of nano-aluminum oxide on the mechanical and microstructure properties of 3-yttria tetragonal zirconia polycrystal ceramic, MSc. Thesis, University of Kufa, Iraq, 2017.
  • [11] H. Zhang, Z. Li, B.-N. Kim, K. Morita, H. Yoshida, K. Hiraga, Y. Sakka, Effect of alumina dopant on transparency of tetragonal zirconia, Journal of Nanomaterials 2012 (2012) 269064. DOI: https://doi.org/10.1155/2012/269064
  • [12] Y. Chieko, P.J.O. Armani, Influence of Y2O3 addition on the microstructure and mechanical Properties of Mg-PSZ Ceramics, Journal of Materials Science and Engineering A 1 (2011) 556-561.
  • [13] C.S. Montross, Precipitation and bulk property behavior in yttria-magnesia-zirconia ternary system, British Ceramic. Transactions and Journal 90/6 (1991) 175-178.
  • [14] J. Klimke, M. Trunec, A. Krell, Transparent tetragonal yttria-stabilized zirconia ceramics: influence of scattering caused by birefringence, Journal of the American Ceramic Society 94/6 (2011) 1850-1858. DOI: https://doi.org/10.1111/j.1551-2916.2010.04322.x
  • [15] K. Matsui, T. Yamakawa, M. Uehara, N. Enomoto, J. Hojo, Mechanism of alumina-enhanced sintering of fine zirconia powder: influence of alumina concentration on the initial stage sintering, Journal of the American Ceramic Society 91/6 (2008) 1888-1897. DOI: https://doi.org/10.1111/j.1551-2916.2008.02350.x [16] Y. Sakka, T. Ishii, T.S. Suzuki, K. Morita, K. Hiraga, Fabrication of high-strain rate superplastic yttria-doped zirconia polycrystals by adding manganese and aluminum oxides, Journal of the European Ceramic Society 24/2 (2004) 449-453. DOI: https://doi.org/10.1016/S0955-2219(03)00207-3
  • [17] X. Guo, R. Waser, Electrical properties of the grain boundaries of oxygen ion conductors: acceptor-doped zirconia and ceria, Progress in Materials Science 51/2 (2006) 151-210. DOI: https://doi.org/10.1016/j.pmatsci.2005.07.001
  • [18] S.E. Hoosain, The sintering and optimization of stabilized zirconia, MSc. Thesis, University of Witwatersrand, Johannesburg, 2010.
  • [19] V. Carle, B. Trippel, U. Tafner, U. Schafer, F. Predel, R. Telle, G. Petzow, Ceramography of high-performance ceramics: description of the materials, preparation, etching techniques, and description of the microstructure, Part VIII, Aluminum oxide, Practical Metallography 32 (1995) 54-76.
  • [20] U. Taffner, V. Carle, U. Schafer, Preparation and microstructural analysis of high-performance ceramics, in: G.F. Vander Voort (ed.), ASM Handbook Volume 9: Metallography and Microstructures, ASM International, Materials Park, OH, USA, 2004, 1057- 1066.
  • [21] ISO 14705:2008. Fine ceramics (advanced ceramics, advanced technical ceramics) - Test method for the hardness of monolithic ceramics at room temperature.
  • [22] G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements, Journal of the American Ceramic Society 64/9 (1981) 533-538. DOI: https://doi.org/10.1111/j.1151- 2916.1981.tb10320.x
  • [23] R.H.L. Garcia, V. Ussui, N.B. Lima, D.R.R. Lazar, 3YTZP-Al2O3 powders synthesized by the coprecipitation route, Materials Science Forum 530- 531 (2006) 677-682. DOI: https://doi.org/10.4028/www.scientific.net/MSF.530- 531.677
  • [24] M. Fornabaio, P. Palmero, R. Traverso, C. Esnouf, H. Reveron, J. Chevalier, L. Montanaro, Zirconia-based composites for biomedical applications: Role of second phases on composition, microstructure and zirconia transformability, Journal of the European Ceramic Society 35/14 (2015) 4039-4049. DOI: https://doi.org/10.1016/j.jeurceramsoc.2015.04.027
  • [25] O. Vasylkiv, Y. Sakka, V.V. Skorokhod, Low-temperature alumina processing and mechanical properties of zirconia and zirconia-alumina nanoceramics, Journal of the American Ceramic Society 86/2 (2003) 299-304. DOI: https://doi.org/10.1111/j.1151- 2916.2003.tb00015.x
  • [26] R. Casati, M. Vedani, Metal Matrix Composites Reinforced by Nano-Particles ‒ A Review, Metals 4/1 (2014) 65-83. DOI: https://doi.org/10.3390/met4010065
  • [27] A.F. Bower, M. Ortiz, The influence of grain size on the toughness of monolithic ceramics, Transactions of the ASME 115 (1993) 228-236.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6023487-9782-4e7f-9f2c-81a8b523d7a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.