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Abstract 

The existing diagnostic techniques for detecting inter-turn short circuits (ITSCs) in induction motors face 

two primary challenges. Firstly, they suffer from reduced sensitivity, often failing to detect ITSCs when only a 

few turns are short-circuited. Secondly, their reliability are compromised by load fluctuations, leading to false 

alarms even in the absence of actual faults. To address these issues, a novel intelligent approach to diagnose 

ITSC fault is proposed. Indeed, this method encompasses three core components: a novel multi-sensor fusion 

technique, a knowledge map, and enhanced Convolutional Neural Networks (CNNs). First, the raw data 

collected from multiple sensors undergoes a transformation into 2D data using a novel image transformation 

based on Hilbert transform (HT) and variational mode decomposition (VMD), which is concatenate to a novel 

information map including frequency fault information and rotational speed. Then, this 3D multi information 

image is used as input to an improvement CNN model that apply a transfer learning for an enhanced version of 

SqueezNet with incorporating a novel attention mechanism module to precisely identify fault features. 

Experimental results and performance comparisons demonstrate that the proposed model attains high 

performance surpassing other Deep Learning (DL) methods in terms of accuracy. In addition, the model has 

consistently demonstrated its ability to make precise predictions and accurately classify fault severity, even 

under different working conditions. 
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DL       Deep learning. 

HT      Hilbert transform. 
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IMs    Induction motors. 

IMF    Intrinsic mode functions. 

ITSC  Interturn short-circuit. 

VMD  Variational mode decomposition.  

 

1. INTRODUCTION  

 

In the present era, over 85% of electric motors 

employed in industrial settings are three-phase 

induction motors (IMs) [1]. Squirrel-cage induction 

motors are widely used in various industries and 

transport [2]. They are extensively utilized due to 

their dependability, ease of design, exceptional 

performance, and robust load-bearing capabilities 

across a wide array of applications, including 

manufacturing, processing, power systems, 
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transportation, and more. Regardless of their size 

and capacity, these IMs are deemed indispensable 

components in contemporary industrial sectors 

where uninterrupted operation hinges upon their 

condition. 

However, IMs often operate in demanding 

mechanical and electrical environments, rendering 

them susceptible to numerous stator and/or rotor 

faults. Extensive research literature underscores that 

stator-winding faults are the most prevalent cause of 

electrical machine failures. Indeed, these types of 

faults account for approximately 20% to 40% of 

failures in induction machines [3], and this number 

can rise up to 66% for high voltage motors.  

Among the primary responsible of stator faults 

are interturn short-circuit (ITSC) faults, known for 

their critical and hazardous consequences. Typically, 

an ITSC fault initiates as an inconspicuous electrical 

contact between adjacent turns due to localized 

insulation deterioration induced by a combination of 
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thermal, electrical, mechanical, and environmental 

stressors. This gives rise to a high current flow in the 

affected turns, leading to a significant temperature 

increase in the afflicted region (commonly referred 

to as a "hot spot"). This elevated temperature can 

swiftly lead to additional insulation failures, 

ultimately culminating in a complete breakdown of 

the stator winding [4]. Therefore, the early detection 

and diagnosis of short-circuit faults occurring 

between turns during motor operation holds 

paramount significance [3]. The available ITSC 

diagnosis techniques can be classified into signal-

processing methods, model-based methods and data-

driven methods [5]. The first category  uses different 

signal processing tools to extract the defect feature 

information from the raw signals, such as motor 

current signature analysis [6], wavelet transforms 

[7], empirical mode decomposition method [8], 

Variational mode decomposition [9], etc. Then, with 

a large amount of expert experience, the existed fault 

in such a system can be localised and diagnosed. 

Model based methods is the second category, which 

uses motor mathematical models [10], observers 

based model to generate features such as Kalman 

filter in [11], etc. The third category, which has been 

widely adopted in recent decades, emphasizes the 

utilization of data-driven intelligent approaches in 

machine learning. This category encompasses 

prominent techniques like Artificial Neural 

Networks (ANNs), Support Vector Machines 

(SVMs), and Fuzzy Logic. These approaches have 

gained substantial popularity due to their 

effectiveness in extracting valuable insights and 

making accurate predictions from complex datasets. 

However, despite their widespread use, they still 

face certain limitations primarily stemming from 

their shallow structure and the requirement of feature 

extraction step. These limitations have prompted 

researchers and engineering to explore more in the 

deep learning approaches to overcome these 

constrains and further enhance the capabilities of 

machine learning models. In fact, Deep learning has 

gained an extensive adoption and popularity in 

recent decades owing to its remarkable ability to 

extract valuable features and achieve high precision 

and predictions without the need of prior knowledge.  

In recent years, there has been a proliferation of 

DL-based fault diagnosis models leveraging 

convolutional neural network (CNN). For instance, 

in research that relies on a one-dimensional 

convolutional neural network (1D CNN), Ibrahim 

et al. proposed a multichannel 1D CNN for bearing 

fault diagnosis [12]. Jun et al. in [13] proposed a 

deep transfer learning method based on 1D-CNN for 

rolling bearing fault diagnosis. An approach for fault 

classification in power assets that involves real-time 

processing and utilizes a 1D CNN is presented in 

[14]. Huang et al. proposed an enhanced ensemble 

empirical mode decomposition incorporating 

adaptive noise reduction alongside a 1D CNN 

Classifier, for diagnosing faults in high-speed train 

Bogies [15]. 

There are also many studies conducted using 2D 

convolutional neural networks, often referred to as 

2D CNNs. Jinsong et al. in [16] proposed an 

intelligent bearing fault diagnosis method that 

utilizes both a conditional generative adversarial 

network (CGAN) and a two-dimensional 

convolutional neural network (2-D-CNN). 

Haiyoung et al. used a CNN based transfer 

learning with 2D sound spectrogram analysis to 

detect rotor faults [17]. Pham et al. proposed time-

frequency analysis and a 2D CNN with multiple 

outputs for diagnosing compound bearing faults 

[18]. In their work, Zhong et al. presented a transfer 

learning approach that utilizes CNN and SVM 

techniques for the diagnosis of gas turbine faults 

[19]. 

These techniques have been successfully applied 

also in the inter turn fault diagnosis. For example, 

Huangfu [20] converted  the raw data of the three-

phase stator current into input matrix and then 

utilized deep transfer learning to recognize inter-turn 

short circuit fault. Patter  Huan in [21] utilize the 

VMD to decompose the raw signal of the permanent 

magnet synchronous motors. The data feature set for 

diagnosing the turn-to-turn short circuit fault in the 

CNN model in this study is derived by calculating 

and reorganizing the poles, peaks, and 

decomposition coefficients of the noisy signals. In 

[22], the authors use the raw signal directly into 

CNN to diagnose the short circuit fault in induction 

motor. However, although the aforementioned 

CNN-based methods provide great results and 

outperform the other convolutional methods in term 

of accuracy but it is shown that their performance is 

limited on some factors: firstly, they require a large 

number of the training data, which need therefore a 

huge memory system. Otherwise, its performance is 

reduced when the training data are insufficient. 

Secondly, most CNN approaches focus only on 

classifying the data but do not consider the physical 

phenomenon that affect the fault feature in the signal. 

Such as the load profile, environmental factors, and 

the fault mechanism. Unfortunately, the 

aforementioned articles and most existing DL 

methods such in [23] - [27] do not fully utilized the 

fault information mechanism or the operating 

conditions which is very crucial for a reliable fault 

diagnosis. Thirdly, in the context of ITSC 

monitoring data, some features are irrelevant to the 

fault. This is particularly evident when considering a 

range of electrical or mechanical signals, including 

stator voltages and currents, radial and axial fields, 

electromagnetic torques, and rotational speed. The 

data of these signals often show different 

characteristics and each signal provides its unique 

perspective of ITSC health condition [28]. Thus, 

within ITSC-centred monitoring systems, it is 

recommended to employ multiple sensors coupled 

with data fusion methodologies to attain optimal 

performance. Consequently, The primary scope of 

this work is to overcome the aforementioned 

obstacles that revolves around identifying electrical 
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faults that manifest in the stator windings of 

induction motors used in various industrial 

applications, including but not limited to blowers, 

centrifugal pumps, and line shafting.etc. The main 

novelty in this article is succinctly outlined in the 

ensuing key points: 

1) To address data limitations and reducing the 

dependence of CNN on large training samples, a 

self-attention mechanism (SAM) combined with 

a novel lightweight model is proposed to diagnose 

and classify the ITSC faults under variable 

operating conditions. Compared with classical 

CNN model, the proposed model has significantly 

reduced parameters and has improved 

generalization ability providing high accuracy 

performance in the shortest possible training time, 

making it beneficial for online diagnosis. 

2) The raw data of multiple sensors are converted to 

2D data images based on novel VMD energy 

algorithm as optimal image coding method 

creating a link between computer vision and fault 

diagnosis. This novel method allows conserving 

the fault information by computing automatically 

its severity related to the amplitude of its energy 

degree embedded in the sub signals. This allows 

to overcome the fault feature extraction step and 

hence the signal will be directly subjected to 1-2D 

image conversion automatically. 

3) To reach a promising performance in fault 

analysistasks. A novel information map of 

domain knowledge, containing rotating speed and 

fault characteristics mechanism for the short 

circuit defection, is built. Then, combined with 

data images to form deep learning input. This 

fusion method helps the proposed CNN model to 

extract pertinent fault features under varying 

operational conditions and guide it to become 

faster with a high accuracy. 

4) The performances of the proposed network model 

are compared to some existing CNN models. 

The remain of this article is organised as follows. 

Section II gives the principal theory of the proposed 

method and its related techniques. Section III 

provides a detailed illustration of the comprehensive 

fault diagnosis system. Section IV of this article 

shows the empirical verification conducted on ten 

datasets to establish the efficacy of the proposed 

model. Furthermore, comprehensive performance 

comparisons are included. Finally, the Conclusion is 

presented in Section V. 

 

2. TEORICAL BACKGROUND  

 

2.1 CNN 

The convolutional neural network (CNN) 

represents a robust solution for pattern recognition 

and image classification tasks, eliminating the 

necessity for intricate feature extraction procedures. 

It primarily consists of fundamental and crucial 

layers, including convolutional, subsampling or 

pooling, and fully connected layers [29]. The details 

of each one is explained as following: 

2.1.1. Convolutional layer 

The convolutional layer plays a crucial role in 

deep learning models for pattern extraction. It 

applies a sum of filters to the input images in order 

to obtain feature maps. Each filter detects specific 

patterns or features present in the input. The outline 

of the convolution function can be given by [28] : 

          (1) 

where and  are respectively [32], the  

input of level r −1 and  output feature maps of 

level r in the convolution process. is the 

convolution kernel between the  input feature 

map and the nth output feature map and k is the 

number of the kernels.  is the bias of the nth output 

feature maps. It can be seen that the different feature 

maps as input share the same kernels and bias.  

Denote the convolution operator, and ψ (•) is a 

nonlinear activation function, which is set to be 

“sigmoid” or “ReLU” [28].  

 

2.1.2. Pooling layers 

Pooling layers are spatial down-sampling layers 

added after the convolutional layer to gradually 

downscale the feature map, increase the receptive 

field size and reduce the number of the parameters in 

the model. The 2D max-pooling layer partitions a 

spatial image into a set of small non-overlapping 2 x 

2 regions. The element at position  of the l-

th 2D max-pooling layer, denoted as  1 2
,

,
x x
l cv , is given 

by:  

( )1 2 1 2
, ,

, ,max
x x x x
l c l cv R=                        (2)  

Where 

(3) 

The set  contains all elements in a 2x2 sub-

matrix. 

 

2.1.3. The fully connected  

The fully connected layer, also known as the 

dense layer or the fully connected neural network, is 

one of the fundamental component in deep learning 

models. Unlike the convolutional layer, which 

operates on local spatial regions, the fully connected 

layer connects every neuron from the previous layer 

to every neuron in the current layer [30]. The fully 

connected layer can be defined as follows: 

           (4) 

Where  

           (5) 

The function g play the role of fully connected 

operator [32]. It converts a vector of m dimension to 

a vector of n dimension by linear transformation 

 then, the bias is added to the 

converted vector. f(.) is the nonlinear activation 

, 1*r k r r r

n n m n

m

x w x b − 
= + 

 


1r

mx − ,r k

nx mth

nth
r

nw

mth

r

nb

*

1 2
( , )x x

    
' '

1 2 1 2, , ' '

, 1, 1 1 1 2 2 2
2 1,2 , 2 1,2x x x x

l c l cR R x x x x x x
−

=  −  −

1 2,

,

x x

l c
R

( )( )1l l
f g 

−
=

( )g x Wx b= +

nxmW  nb
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function, which is  generally set to be ReLU, 

sigmoid, tanh or  max (.,0). 

 

2.1.4 The dropout layer  

The dropout layer is commonly utilized 

following fully connected layers to mitigate 

overfitting. It can be described as an element-wise 

dropout layer, which is defined by the following 

expression [31]:  

          (6) 

                  (7) 

where  

 is the c-th activation of the l-th dropout layer. 

The is the coefficient which determines the 

value assigned to the c-th activation. If this 

coefficient is equal to one, , the c-th 

activation of the l-th layer retrains its value from the 

previous layer, remaining unchanged. Otherwise, the 

c-th activation of the l-th layer is set to zero, 

effectively suppressing its influence from the 

previous layer [32]. 

 

2.2. Variational Mode Decomposition: 

The Variational Mode Decomposition (VMD) 

algorithm is a novel technique for signal 

segmentation that has gained recent attention due to 

its advantages in dealing with signals under non-

stationary and highly noisy condition. This approach 

incorporates three techniques: Wiener filtering, one-

dimensional Hilbert transform, and heterodyne 

demodulation [31]. In contrast to empirical EMD, 

VMD can segmented the original signal into a series 

of its constituent (IMFs) called modes (uk) by 

resolving a constrained variational problem. It 

considers each intrinsic mode (IMF) as an 

amplitude-modulated and frequency modulated 

(AM-FM) signal, wich characterized by a band-

limited around a center frequency (k). The 

formulation of the constrained variational problem is 

presented as follows [33]:  

  

2

¨
1 2

min ( ) * ( ) (8)krt

k k

k
j t

t kü
k

j
t u t e

t


 



−

=

    
 +   

    

    

1

( ) ( )
k

k

k

u t f t
=

=              (9) 

In order to resolve the problem defined in (8), the 

augmented Lagrangian method was used. 

Consequently, the non-constrained variational 

problem can be given by the following expression 

[31]: 

   ( )
2¨

1 2

, , ¨ ( ) * ( ) (10)k

k
j t

k k t k

k

j
L u t u t e

t

   


−

=

    
=  +   

    



By utilizing the alternate direction method of 

multipliers (ADMM), the iterative equations for ku  

and  k  can be obtained. In this context, α 

represents the balancing parameter that controls the 

data fidelity constraint, while λ(t) corresponds to the 

Lagrange multipliers. The expressions for ,k ku   

and   in the iterative process are given as follows 

[32]:  

1

1

( )
( ) ( ) ( )

2
( ) (11)

1 2 ( )²

n
n n
k k

n i k i k
k n

k

f u u

u

 
  


  

+

+  

− − +

=
+ −

 
 

2
1

1 0

2
1

0

( )

( )

n
kn

k
n
k

u d

u d

  


 

 +

+

 +
=



       (12) 

1 1n n n
k

k

f u  + + 
= + −  

 
        (13) 

The primary steps of the VMD algorithm can be 

outlined as follows [34]: 

Step 1: Initialize , ,l l
k k ku   . 

Step 2: Update ,k ku   related to equations (11) and 

(12). 

Step 3: Update   based on the equation (13). 

Step 4: if 

2
1

2

2

2

n n
k k

nk
k

u u

u



+ −
  end the iteration. 

Otherwise return to step2. 

 

2.3. Stator phase current envelope 

2.3.1 Stator current in case of ITSC fault 

Theoretically, in the case of healthy three-phase 

squirrel cage induction motor, the general 

expressions of stator currents can be written as: 

( ) cos(2 )

2
( ) cos(2 )

3

4
( ) cos(2 )

3

A f s

B f s

C f s

i t I f t

i t I f t

i t I f t










 =



= −



= −


        (14) 

The occurrence of an ITSC fault provides a slight 

increase in the current of the injured phase 

accompanied by a dangerous increase in 

temperature, which can eventually lead to the 

destruction of the insulation and the winding. In [35] 

and [36], the authors reported that the stator current 

harmonics induced by the presence of an ITSC fault 

could be defined by: 

ITSC s rf f k f=                                  (15) 

Where ,ITSC s rf f and f are the inter-turn short-

circuit harmonics, the supply frequency and the 

speed rotation frequency. Therefore, in the case of 

ITSC fault, the stator currents expression can be 

given by: 

, , 1,l c l c l ca  −=

, (1,0)l ca B

,l c

,l ca

, 1l ca =
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1 1

2 2

( ) cos(2 )

cos(2 ( ) )

cos(2 ( ) )
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         (16) 

1 1

2 2

2
( ) cos(2 )

3

cos(2 ( ) )

cos(2 ( ) )
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k k

ITSC s R ITSC

k

k k
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k
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
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+ − −
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
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  (17) 

1 1

2 2

2
( ) cos(2 )

3

cos(2 ( ) )

cos(2 ( ) )

B f s

k k

ITSC s R ITSC

k

k k

ITSC s R ITSC

k

i t I f t

I f kf t

I f kf t




 

 

= −

+ − −

+ + −





  (18) 

Where, 1 2, ,k k

f ITSC ITSCI I I denote,  respectively, 

the fundamental amplitudes and the sideband 

harmonic related to the ITSC fault. 

 

2.3.2 Stator current envelope (SCE) 

The envelope signal is obtained using a process 

called envelope detection or amplitude 

demodulation. This process involves extracting the 

magnitude variations of a signal (such as an 

amplitude-modulated signal) to obtain the envelope 

signal, that contain the main fault valuable 

information, through the application of Hilbert 

transform on the raw signal. In case of ITSC fault, 

the signal envelope is mathematically defined in 

(21). In fact, the equation (16) of the first stator phase 

current can be rewritten as:  
 

( ) ( )cos(2 ) ( )sin(2 )A s si t A t f t B t f t = +    (19) 

(19) Can take the following form: 

( ) ( )sin(2 ( ))A m si t A t f t t = +          (20) 

With  

2 2( ) ( ) ( )mA t A t B t= + ,                    (21) 

( )
( ) arctan

( )

A t
t

B t


 
=  

 
 

1 1 2 2

1 1 2 2

( ) ( cos( ) cos( ))cos(2 )

( sin( ) sin( ))sin(2 ) (22)

k k k k

f ITSC ITSC ITSC ITSC r

k

k k k k

ITSC ITSC ITSC ITSC r

A t I I I kf t

I I kf t

  

  

= + +

+ −


 

1 1 2 2

1 1 2 2

( ) ( sin( ) sin( ))cos(2 )

( cos( ) cos( ))sin(2 ) (23)

k k k k

f ITSC ITSC ITSC ITSC r

k

k k k k

ITSC ITSC ITSC ITSC r

B t I I I kf t

I I kf t

  

  

= + +

+ −


  

 

As shown in previous relations (22) and (23), the 

imbalanced stator phases induced by the ITSC fault 
leads to the amplitude modulation of the stator 

current at  frequency kfr. This effect allows the stator 

current envelope (SCE) to be served as a merit 

diagnostic signal [36]. 

 

2.3.3 Extraction of SCE  

Usually, the SCE can be obtained by Hilbert 

transform (HT), which is a well-established method 

extensively employed in the field of signal analysis. 

Mathematically, the HT of stator current iA(t) can be 

given by [40] : 

1

1( ( )) ( ) * ( )

( )

( )

A A

A

HT i t y t i t
t

i
d

t









+

−

= =

=
−

                                 (24) 

The SCE can be extracted by the resulting 

expression: 
2 2( ) ( ) ( )ASCE t i t y t= +                    (25) 

 

3. PROPOSED METHOD 

 

3.1 Problematic issue  

Short circuit faults in stator windings are widely 

acknowledged as the primary cause of failure in 

electrical machines. The detection of this fault is 

very challenging. In fact, even a small number of 

shorted turns can lead to significant issues. It can 

produce a tragic breakdown not only within the 

motor itself but also in its associated equipment. 

However, when a short circuit fault occur even for a 

low fault severity, it will affect the magnitude of the 

ITSCHf harmonic as reported in [32], |36]. The 

advantage of this frequency is it characterize the 

fault of the short circuit frequency signature in the 

low frequency band that helps to discern between the 

faulty and healthy state. However, the challenging 

aspect of diagnosing this fault is that a very small 

number of turns in short circuit cannot be directly 

detected from the raw signal. To overcome this 

problem, Deep learning and advanced pre-

processing data method can provide a solution to 

resolve this issue. The primary advantage of 

applying deep learning in fault diagnosis is that it can 

solve the aforementioned problem by treating signals 

or specific faults as unique image representations. 

However, regarding the study of this fault. Most DL 

approaches does not integrate its localisation or 

severity estimation. To overcome this problem, this 

paper propose a novel information map to integrate 

the domain knowledge, fault frequency signature 

localization and fault severity estimation, which 

constitute the first great novelty of this article. To 

accomplish these tasks. The overview of this method 

is presented in Figure 1. The raw signal was selected 
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for three different sensor localisation and then are 

processed through a novel signal to image 

conversion algorithm. The advantage of this signal-

image algorithm is to highlights the energy 

fluctuation in different degree to get a different fault 

severity estimation. However, in this work, the 2D 

data are concatenated with the novel IM to create the 

input images to the improvement CNN. Details are 

provided in following sections. 

 

3.2 Encoding time-series signal into image 

In the domain of machine fault diagnosis, stator 

current signals are commonly known for their 

complex nature, often containing a significant 

volume of extraneous information that is unrelated 

to the diagnosis of faults. [36]. Fortunately, 

Convolutional Neural Networks (CNNs) are 

specifically tailored to handle highly nonlinear and 

complex signals, which proves advantageous in the 

field of machine fault diagnosis when dealing with 

intricate stator current signals.; this is due to its 

convolution  

 

Fig. 1. Flow chart of the proposed method 

 

operation, which works similar to a filter (e.g., 

lowpass, bandpass, or high pass).Thus, this means 

that the CNN is able to extract strong and 

distinguishable features from complex higher- 

dimensional structure, such as 2D/3D images. For 

this purpose, a new image is constructed by fusion of 

the data 2 Gray images with the IM as shown in 

figure 2. In fact, a set of overlapping windows of 

length M is utilized to segment each stator phase 

current data into M segments. Then, each segment 

was processed using the HT and VMD methods. In 

fact, the VMD is carried out on each segment, in 

order to segment the signals into IMF sub-signals. 

Then, the stored IMF energy can be computed as:  

      (26) 

Where Ui represents the IMF signal, N and M are 

respectively the length signal and the mode number. 

By using both the energy of the IMFs and its 

signals, the 2D data matrix of size (MxN) is built. In 

this paper, this matrix is called Energy IMF signals 

(EIS), and it can be constructed as follows: 

2

.. ,,
; 1,2,..., 1,2,..., (27)i i ji j

EIS E U i M j N


= + = =

The ith vector into WSE matrix is set as: 

 (1), (1), , ( )i i i iEIS y y y N=      (28) 

Where:  

                      (29) 

According to (27), at each time delay  an EIS 

matrix is constructed which represents the energy 

fluctuation of the various obtained sub-signals. In 

this case, the dynamic nature of the frequency 

distribution can be mapped into EIS matrix that can 

hold a fixed number of feature descriptors, thus 

reducing the computational complexity of the 

texture-based fault. Finally, a 2D data image is 

constructed, characterized by its size of M×N. The 

EIS matrix values are scaled and normalized 

between 0 and 255, reflecting the grayscale pixel 

intensity values of the Gray image. By considering 

EIS (i, j) as the energy value, the image (D) pixel 

intensity at the coordinates (i, j)  

can be expressed as follows: 

 
max min

255
( , ) ( , ) mD i j round EIS i j I

I I

  
= − 

−  
(30) 

Where Imax and Imin denote the maximum and 

minimum of the energy values of the IMFs. 

 

 

Fig. 2. Time-series signal into image 

conversion process 

 

3.3. Information map construction 

An information map (IM) is a visual 

representation of data or knowledge that provides a 

structured and organized view of the information. It 

typically includes various expert domain knowledge 

about a particular discipline or field like fault 

characteristics, operating condition and some 

diagnosis rules that can be deduced from historical 

observing data, etc [37]. For ITSC fault diagnosis, 

one of the prominent significant type of domain-

 
2

1

( ) 1,2, ,
M

i i

n

E U n i N
=

= =

2( ) ( )i i iy j E U j= +



 , 1, ,i j M
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specific knowledge is the frequency fault 

characteristics (FCF).  

As mentioned above, eq (15) can be rewrite as:  

1

1
ITSC r r FCF rf f k f k f

g
=  =

−
   (31) 

With  

1
, 1,2,...

1
FCF rk k f k

g
=  = =

−
 , and g is the 

slip. 

It is obvious that the FCF can be determined if 

both shaft speed and slip are available. However, it 

is well known that the impact of these frequencies is 

existed on the low area. To reinforce the DL bearing 

diagnosis in this range, an information map (IM) is 

constructed to merge, among other things, the 

domain knowledge in the networks input. To 

preserve the IM data coherent with the resulting data 

images, several operating conditions are displayed in 

different gray scales. Initially, the IM is constructed 

as an empty matrix of size M ×M. then, the IM 

background refers to the representation of operating 

condition information through gray levels [32], 

denoted as yij : 

ij ry f=                                    (32) 

Where ijy is the gray value at the specified 

coordinate ( , ), ri j f is the discretized rotating 

speeds. The main steps to construct the information 

map are recapitulated as follows. 

1. Acquisition of stator currents from multiple 

sensors for different operating conditions 

including the record of speed and the load. 

2. Extract the stator current envelope of each signal 

phase. 

3. Segment the envelope signal  into an aggregation 

sub-signals using VMD  

4. Calculate the correlation quantities, according to 

(34), between the resulted sub-signals and the 

synthetic signals defined as: 

( ) sin (2 )i i FCFi rS t A k f t=                       (33) 

( )( )
1

, I

i

M

i i

i

S U

S U

S S U U

r
 

=

− −

=


       (34) 

5. The most correlated signals, according to a 

predefined threshold, are chosen to construct the 

information map at coordinate: 

FCF

d

d

FCF r

fr

FCF

k f
i round i

f

 
=  

 
       (35) 

Where 1,2,3d = …, 
dFCFk  and  

FCFf  represents 

the index, the coefficient and the discretization step 

of the FCFs, which are fITSC, rf . FCFd
i and fri

corresponding to the horizontal coordinates of the 

FCF and the rotating speed on the information map 

respectively 

Finally, the built information map is combined 

with the data images to construct the input network. 

Then, the obtained image is resized to (227x227x3). 

Fig.3 illustrates the images related to three type of  

states (healthy and with ITSC fault). 

 

3.4. Overview of SqueezNet  

Over the past few years, the integration of 

lightweight models has greatly enhanced the 

efficiency of neural networks, allowing them to be 

applied to a diverse set of tasks. 

 

Fig. 3. The resulted input images for healthy 

and fault states 

 

This advancement has been facilitated by the 

emergence of innovative lightweight architecture 

designs like SqueezeNet, MobileNet, and 

ShuffleNet. Among these, SqueezeNet particularly 

stands out as a model with lower complexity that 

achieves comparable accuracy to AlexNet but with a 

significantly reduced parameter count of just 1/50th. 

SqueezeNet consists of a fundamental building block 

known as the Fire module, which incorporates both 

a squeeze layer and an expand layer. The squeeze 

layer employs 1 × 1 convolution filters, resulting in 

a significant reduction of parameters by a factor of 

nine compared to using 3 × 3 convolution filters. The 

expand layer utilizes a combination of 1 × 1 and 3 × 

3 filters. The overall structure of SqueezeNet is 

composed of nine Fire modules, forming its global 

architecture, as shown in Fig. 4. 

 

3.5. Proposed modified SqueezNet 

Ensuring the uninterrupted operation of 

machines requires the presence of a crucial ITSC 

fault detection model. The fundamental concept of 

the proposed method revolves around the utilization 

of transfer learning to precisely locate fault features 

while reducing the computational load of the deep 

fault detection model [38]. By combining transfer 

learning with deep learning (DL), the proposed 

approach offers an efficient solution for detecting 

ITSC faults.  

The details of the improved SqueezNet model, as 

shown in figure.6, is described down below: 

• The SqueezNet original architecture is modified 

where the last four fire modules were deleted 

which remain only five fire modules.  

• The first ReLU were deleted and replaced with 

leaking RELU to further speeds up the training 

process. 

• In our classification problem, the final 

convolution layer of SqueezeNet is substituted 

with a newly tailored layer. 
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• A block of coordinate attention mechanism is 

added where the dropout layer was deleted and 

replaced by batchNormalisation, and the global 

average pooling was placed after the sum 

(concatenation layer) from the block of attention 

mechanism  

The block of attention is shown in figure 7, which 

contains three lateral connections (f1, f2, f3). Where 

the f3 contained a paypass layer that is firstly 

extracted from the concatenation layer of the fifth 

fire modules to the last concatenation layer. While 

the f1 lateral connection contained an average 

pooling layer, convolution layer and clipped ReLU 

layer and the second f2 lateral connection contained 

batchNormalisation layer, convolution layer and 

ReLU. The aim of this block is to localize the 

diagnosis of the ITSC fault by focus on low 

frequencies area as shown in figure 5.  

 

Fig. 4. SqueezNet model architecture 

 

 

Fig. 5. The ITSC fault attention area 

 

In this case, the horizontal direction is enough to 

aggregate ITSC fault features. In this direction, for a 

given input , we use a spatial extent by the 

application of a pooling kernel (1, W) to encode each 

channel along the vertical coordinate leads to the 

formulation of the output for the c-th channel at 

width w as follows: 

                            (36) 

(36) facilitates the establishment of a global 

receptive field and effectively encodes accurate 

positional information. Thus, eq (1) can be rewrite in 

a compact form as:  

( )Conv X CX B= +                      (37) 

Where X ∈ ℝCXHXW and C, B represent the 

convolution matrix and bias respectively.  

 

Fig. 6. The proposed modified squeeznet 

 

The formulation for the specific value of this 

mechanism can be expressed as follows: 
 

( )( )1 1 ( )f conv P X=         (38) 

( )( )2 2 ( )f conv X =                       (39) 

 1 2,f f f=                                        (40) 

 

The expression for the coordinate attention output 

can be formulated as: 

 ( ),output conv f X=                     (41) 

 

Fig. 7. Proposed coordinate block of attention 

mechanism 

CxHxWX 

0

1
( ) ( , )c

i W

P X x h i
W  

= 
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Where [·, ·] denotes the concatenation operation, δ1, 

δ2 and 


are Clipped RELU, RELU activation 

function and batch normalisation. 

 

4. EXPERIMENTAL RESULTS 

 

4.1. Data Description and image construction  

To evaluate the effectiveness of our diagnostic 

method, the proposed improvement SqueezNet is 

conducted on the experimental data with multiple 

ITSC faults and under different motor operating 

conditions. Fig 8 illustrates the experimental test 

bench utilized in this work, which is composed of a 

1.1 kW squirrel-cage induction motor, an external 

box is incorporated to introduce ITSC faults into the 

stator phase, enabling the variation of the number of 

turns. (as shown in Fig. 9). The mechanical load 

consists of powder brake driven by a control unit. 

The currents in the three-phase stator of the 

induction motor were obtained through current 

sensors and sampled at a rate of 10 kHz using an NI 

6036-E series data acquisition card. 

 

Fig. 8. The experimental setup 

 

 
Fig. 9. External box with several ITSC fault 

 

The stator current and its envelope associated to 

their decomposition by VMD are illustrated in 

Figures 10 and 11 respectively, representing both the 

healthy state and the condition with five shorted 

turns. 

 

4.2. Performance verification 

The proposed method is tested and evaluated 

over the 3D dataset generated using the VMD signal-

to-image conversion. The modified CNN model was 

constructed in a MATLAB environment on a 

computer with two E5-2667 v3 CPUs, a GTX1080Ti 

GPU, 32GB of memory, and a 1TB hard drive.  

 

Fig. 10. The stator current and its envelope a) 

Healthy b) ITSC fault with five shorted terms. 

 

 

Fig. 11. The VMD decomposition: (a) 

Healthy state (b) ITSC fault with five 

shorted-terms (red). 

 

However, we used ten classes (healthy and AFa–

BFd, as registered in Table 1 to validate the CNN 

model. There are 300 images per class where in each 

case; the dataset was divided into two subsets: 

training and testing. The training subset comprised 

70% of the data, while the remaining 30% was 

allocated for testing. During the training stage, the 

system acquired knowledge of the features, and 

subsequently, in the testing stage, the system 

performance was evaluated based on this acquired 

knowledge. The results of the improved CNN model 

with attention mechanism, in term of training and 

testing accuracy, is presented in Fig.12. It is evident 

that the proposed method demonstrates rapid 

convergence, ultimately creating a highly accurate 

model.  

Additionally, to emphasize the effectiveness of 

the proposed technique, we utilize both the 

confusion matrix and T-SNE visualization, as shown 

in Figures 13 and 14, respectively. As illustrated in 

Figure 13, the diagonal entries in the matrix indicate 

correct classifications, whereas the off-diagonal 

elements represent instances of misclassification. In 

summary, the depiction of the confusion matrix is as 

follows. 

The classes (AFa, AFb,, BFd) : ITSC with 7, 13, 20 

shorted terms respectively without load. Here, the 

motor fault data are correctly classified. The 

accuracy of each class is 100%. 

The classes (AFd, AFe,, BFa) : ITSC with 5, 7, 13, 

shorted terms respectively under 30% of rated load. 

In this case, the motor fault data are correctly 
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classified and an accuracy of 100% is achieved, for 

each class. 
 

Table 1. Index class related to different type of fault 

Index class. Type of fault Number of 

shorted terms 

AF_a ITSC_phaseA_no 

load 

7 

AF_b ITSC_phaseA_no 

load 

13 

AF_c ITSC_phaseA_no 

load 

15 

AF_d ITSC_phaseA_30% 

of rated  load 

5 

AF_e ITSC_phaseA_30% 

of rated load 

7 

BF_a ITSC_phaseA_30% 

of rated load 

13 

BF_b ITSC_phaseA_no 

load  

20 

BF_c ITSC_phaseA_50% 

of rated load 

13 

BF_d ITSC_phaseA_50% 

of rated load 

15 

 

The classes (BFc, BFd): ITSC with 13 and 15 

shorted terms respectively under 50% of rated load. 

For these two classes, the motor fault data are 

correctly classified and an accuracy of 100% is 

attained. 

The class AFc: ITSC with 15 shorted terms, 

without load. The number of misclassified data is 2. 

An accuracy of 97.8% (90/92) is achieved. 

In the case of a healthy motor condition 

(Healthy), all the data is accurately classified, 

achieving 100% accuracy. 

In total, there are 896 data points correctly 

classified out of a total of 898. Therefore, the overall 

accuracy of the proposed method stands at 99.8% 

(896/898). 

 
Fig. 12. Accuracy training and testing of the 

proposed CNN 

 

 
Fig. 13. Confusion matrix 

 

 
Fig.14. T-SNE visualization 

 

Overall, we can confirmed that the model has 

correctly predicted and classified the fault severity 

even under different conditions, which is also 

consistent with the T-SNE visualization as well. In 

fact, the final feature results obtained for the testing 

data from datasets AF_a to BF_d are displayed in 

figure 14. Observing the graphs, it is evident that the 

feature distributions corresponding to the same 

health conditions are notably compact or tightly 

clustered. While features related to different health 

conditions are distinctly separated in these ten 

different datasets. To conclude, the proposed model 

demonstrate robust identifiability and reliability in 

diagnosing ITSC fault under various working 

conditions.  

 

4.3. Performance comparison 

Table 2 presents a thorough comparison 

highlighting the fault diagnosis accuracy of four 

established deep learning (DL) algorithms that 

utilize Convolutional Neural Networks (CNN), 

which is AlexNet, MobileNet, RasNet-50 and the 

standard SqueezNet. 
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Table 2. Comparison with DL algorithms 

Index class. Type of fault consuming time 

[s] 

Proposed 

method 

99.8% 56 

Squeeznet 99.3% 50 

Mobilenet 99.7% 72 

Alexnet 99.5% 72 

RESNET50 99.7% 60 

 

Indeed, the results distinctly indicate that the 

proposed model achieves similar accuracy 

performance and speed when compared to renowned 

models  

 

CONCLUSION  

 

This article introduced an innovative deep 

learning approach tailored for the diagnosis and 

localization of inter-short circuit faults. Our method 

involved the development of a data fusion approach, 

leveraging the HT and VMD, to combine current 

signals from multiple sensors with domain 

knowledge and operating conditions. This fused 

multi-dimensional information was subsequently 

used to train the improvement CNN model in a 

unified training process.  

The refined CNN model combined with multi-

dimensional data including domain knowledge 

related to fault characteristic frequency and 

rotational speed, proves highly effective in 

accomplishing ITSC fault diagnosis for different 

operating condition and fault severity.  

The suggested model combines the self-attention 

mechanism with the CNN network, resulting in a 

promising performance in fault analysis tasks. Given 

the limited availability of data in the practical 

domain, the self-attention mechanism proves highly 

advantageous as it can effectively utilize the limited 

data resources by highlighting the most relevant 

regions within the CNN input image. 

The method was tested experimentally using a 

setup involving ten different conditions. The results 

strongly demonstrate the significant potential of our 

proposed method in improving the accuracy of fault 

diagnosis. Through the fine-tuning of hyper 

parameters, we achieve a CNN model with an 

accuracy of 99.8%. 
Furthermore, the utilization of both the confusion 

matrix and the t-SNE method serves to visualize the 

CNN learning process. These results collectively 

underscore the efficacy of the proposed method in 

accurately diagnosing ITSC faults under different 

loads. 
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