PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Uniqueness of solutions for a ψ-Hilfer fractional integral boundary value problem with the p-Laplacian operator

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we discuss the existence of a unique solution to a ψ-Hilfer fractional differential equation involving the p-Laplacian operator subject to nonlocal ψ-Riemann-Liouville fractional integral boundary conditions. Banach’s fixed point theorem is the main tool of our study. Examples are given for illustrating the obtained results.
Wydawca
Rocznik
Strony
art. no. 20220195
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
  • Department of Mathematics, Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
  • Department of Mathematics, College of Sciences & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
autor
  • Department of Mathematics, Nonlinear Analysis and Applied Mathematics (NAAM)- Research Group, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
  • Department of Mathematics, Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
Bibliografia
  • [1] G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford, 2005.
  • [2] R. L. Magin, Fractional Calculus in Bioengineering, Begell House Publishers, Danbury, 2006.
  • [3] M. Javidi and B. Ahmad, Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system, Ecological Modelling 318 (2015), no. 3, 8–18, DOI: https://doi.org/10.1016/j.ecolmodel.2015.06.016.
  • [4] H. A. Fallahgoul, S. M. Focardi, and F. J. Fabozzi, Fractional Calculus and Fractional Processes with Applications to Financial Economics. Theory and Application, Elsevier/Academic Press, London, 2017.
  • [5] A. N. Chatterjee and B. Ahmad, A fractional-order differential equation model of COVID-19 infection of epithelial cells, Chaos Solitons Fractals 147 (2021), 110952, DOI: https://doi.org/10.1016/j.chaos.2021.110952.
  • [6] H. Yan, Y. Qiao, L. Duan, and J. Miao, Synchronization of fractional-order gene regulatory networks mediated by miRNA with time delays and unknown parameters, J. Franklin Inst. 359 (2022), no. 5, 2176–2191, DOI: https://doi.org/10.1016/j.jfranklin.2022.01.028.
  • [7] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204. Elsevier Science B.V., Amsterdam, 2006.
  • [8] K. Diethelm, The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010.
  • [9] B. Ahmad, A. Alsaedi, S. K. Ntouyas, and J. Tariboon, Hadamard-type Fractional Differential Equations, Inclusions and Inequalities, Springer, Cham, 2017.
  • [10] B. Ahmad, M. Alghanmi, S. K. Ntouyas, and A. Alsaedi, Fractional differential equations involving generalized derivative with Stieltjes and fractional integral boundary conditions, Appl. Math. Lett. 84 (2018), 111–117, DOI: https://doi.org/10.1016/j.aml.2018.04.024.
  • [11] R. Hilfer, (Ed.), Applications of Fractional Calculus in Physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
  • [12] R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, J. Chem. Phys. 284 (2002), no. 1–2, 399–408, DOI: https://doi.org/10.1016/S0301-0104(02)00670-5.
  • [13] I. Ali and N. A. Malik, Hilfer fractional advection-diffusion equations with power-law initial condition; a numerical study using variational iteration method, Comput. Math. Appl. 68 (2014), no. 10, 1161–1179, DOI: https://doi.org/10.1016/j.camwa.2014.08.021.
  • [14] A. Wongchareon, B. Ahmad, S. K. Ntouyas, and J. Tariboon, Three-point boundary value problem for the Langevin equation with the Hilfer fractional derivative, Adv. Math. Phys. 2020 (2020), Article ID 9606428, 11 pages, DOI: https://doi.org/10.1155/2020/9606428.
  • [15] J. E. Restrepo and D. Suragan, Hilfer-type fractional differential equations with variable coefficients, Chaos Solitons Fractals 150 (2021), 111146, DOI: https://doi.org/10.1016/j.chaos.2021.111146.
  • [16] C. Nuchpong, S. K. Ntouyas, A. Samadi, and J. Tariboon, Boundary value problems for Hilfer type sequential fractional differential equations and inclusions involving Riemann-Stieltjes integral multi-strip boundary conditions, Adv. Difference Equ. 2021 (2021), no. 268, 19, DOI: https://doi.org/10.1186/s13662-021-03424-7.
  • [17] Y. Zhou and J. W. He, A Cauchy problem for fractional evolution equations with Hilfer’s fractional derivative on semi-infinite interval, Fract. Calc. Appl. Anal. 25 (2022), 924–961, DOI: https://doi.org/10.1007/s13540-022-00057-9.
  • [18] A. Alsaedi, B. Ahmad, A. Assolami, and S. K. Ntouyas, On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions, AIMS Math. 7 (2022), no. 7, 12718–12741, DOI: https://doi.org/10.3934/math.2022704.
  • [19] J. V. C. Sousa and E. Capelas de Oliveira, On the Ψ -Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul. 60 (2018), 72–91, DOI: https://doi.org/10.1016/j.cnsns.2018.01.005.
  • [20] C. Bai, Existence and uniqueness of solutions for fractional boundary value problems with p-Laplacian operator, Adv. Difference Equ. 2018 (2018), no. 4, 12, DOI: https://doi.org/10.1186/s13662-017-1460-3.
  • [21] J. V. C. Sousa, K. D. Kucche, and E. Capelas de Oliveira, Stability of ψ-Hilfer impulsive fractional differential equations, Appl. Math. Lett. 88 (2019), 73–80, DOI: https://doi.org/10.1016/j.aml.2018.08.013.
  • [22] M. S. Abdo, S. T. M. Thabet, and B. Ahmad, The existence and Ulam-Hyers stability results for ψ-Hilfer fractional integrodifferential equations, J. Pseudo-Differ. Oper. Appl. 11 (2020), 1757–1780, DOI: https://doi.org/10.1007/s11868-020-00355-x.
  • [23] W. Abdelhedi, Fractional differential equations with a ψ-Hilfer fractional derivative, Comput. Appl. Math. 40 (2021), no. 53, 19, DOI: https://doi.org/10.1007/s40314-021-01447-0.
  • [24] A. Wongcharoen, S. K. Ntouyas, P. Wongsantisuk, and J. Tariboon, Existence results for a nonlocal coupled system of sequential fractional differential equations involving ψ-Hilfer fractional derivatives, Adv. Math. Phys. 2021 (2021), Art. ID 5554619, 9, DOI: https://doi.org/10.1155/2021/5554619.
  • [25] N. Vieira, M. M. Rodrigues, and M. Ferreira, Time-fractional diffusion equation with ψ-Hilfer derivative, Comput. Appl. Math. 41 (2022), no. 230, 26, DOI: https://doi.org/10.1007/s40314-022-01911-5.
  • [26] M. Vellappandi, V. Govindaraj, and C. Sousa, Fractional optimal reachability problems with ψ-Hilfer fractional derivative, Math. Methods Appl. Sci. 45 (2022), no. 10, 6255–6267, DOI: https://doi.org/10.1002/mma.8168.
  • [27] L. S. Leibenson, General problem of the movement of a compressible fluid in a porous medium (Russian), Bull. Acad. Sci. URSS. Ser. Geograph. Geophys. [Izvestia Akad. Nauk SSSR] 9 (1945), 7–10.
  • [28] X. Liu, M. Jia, and X. Xiang, On the solvability of a fractional differential equation model involving the p-Laplacian operator, Comput. Math. Appl. 64 (2012), no. 10, 3267–3275, DOI: https://doi.org/10.1016/j.camwa.2012.03.001.
  • [29] X. Liu, M. Jia, and W. Ge, The method of lower and upper solutions for mixed fractional four-point boundary value problem with p-Laplacian operator, Appl. Math. Lett. 65 (2017), 56–62, DOI: https://doi.org/10.1016/j.aml.2016.10.001.
  • [30] J. Tan and M. Li, Solutions of fractional differential equations with p-Laplacian operator in Banach spaces, Bound. Value Probl. 2018 (2018), no. 15, 13, DOI: https://doi.org/10.1186/s13661-018-0930-1.
  • [31] S. Wang and Z. Bai, Existence and uniqueness of solutions for a mixed p-Laplace boundary value problem involving fractional derivatives, Adv. Difference Equ. 2020 (2020), no. 694, 9, DOI: https://doi.org/10.1186/s13662-020-03154-2.
  • [32] J. V. C. Sousa, Existence and uniqueness of solutions for the fractional differential equations with with P-Laplacian in HPν,η;ψ, J. Appl. Anal. Comput. 12 (2022), no. 2, 622–661, DOI: https://doi.org/10.11948/20210258.
  • [33] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul. 44 (2017), 460–481, DOI: https://doi.org/10.1016/j.cnsns.2016.09.006.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5f59806-3d24-4937-9b38-f8b37059448a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.