PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A locally modified single-phase model for analyzing magnetohydrodynamic boundary layer flow and heat transfer of nanofluids over a nonlinearly stretching sheet with chemical reaction

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of boundary layer flow and heat transfer of nanofluids over nonlinear stretching of a flat sheet in the presence of a magnetic field and chemical reaction is investigated numerically. In this paper, a new locally modified single-phase model for the analysis is introduced. In this model, the effective viscosity, density and thermal conductivity of the solid-liquid mixtures (nanofluids) which are commonly utilized in the homogenous single-phase model, are locally combined with the prevalent single-phase model. Similarity transformation is used to convert the governing equations into three coupled nonlinear ordinary differential equations. These equations depend on five local functions of the nanoparticle volume fraction viz., local viscosity ratio, magnetic, Prandtl, Brownian motion and thermophoresis functions. The equations are solved using Newton’s method and a block tridiagonal matrix solver. The results are compared to the prevalent single-phase model. In addition, the effect of important governing parameters on the velocity, temperature, volume fraction distribution and the heat and mass transfer rates are examined.
Rocznik
Strony
81--94
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • School of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran
Bibliografia
  • 1. Abu-Nada E., Chamkhac A.J., 2010, Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid, European Journal of Mechanics B/Fluids, 29, 472-482
  • 2. Aminossadati S.M., Ghasemi B., 2009, Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure, European Journal of Mechanics B/Fluids, 28, 630-640
  • 3. Bachok N., Ishak A., Pop, I., 2010, Boundary-layer flow of nanofluids over a moving surface in a flowing fluid, International Journal of Thermal Sciences, 49, 1663-1668
  • 4. Buongiorno J., 2006, Convective transport in nanofluids, ASME Journal of Heat Transfer, 128, 240-250
  • 5. Chen C.K., Char M. I., 1988, Heat transfer of a continuous stretching surface with suction or blowing, Journal Mathematical Analysis and Applications, 135, 568-580
  • 6. Choi S.U.S., 1995, Enhancing thermal conductivity of fluids with nanoparticles, ASME Fluids Engineering Division, 231, 99-105
  • 7. Choi S.U.S., Zhang Z.G., Yu W., Lockwood F.E., Grulke E.A., 2001, Anomalous thermal conductivity enhancement in nanotube suspensions, Applied Physics Letters, 79, 14, 2252-2254
  • 8. Cortell R., 2007, Viscous flow and heat transfer over a nonlinearly stretching sheet, Applied Mathematics and Computation, 184, 864-873
  • 9. Crane L.J., 1970, Flow past a stretching plate, Kurze Mitteilungen-Brief Reports-Communications Breves, 21, 645-647
  • 10. Das K., 2015, Nanofluid flow over a non-linear permeable stretching sheet with partial slip, Journal of the Egyptian Mathematical Society, 23, 2, 451-456
  • 11. Esfe M.H., Saedodin S., Mahian O., Wongwises S., 2014, Thermal conductivity of Al2O3/water nanofluids – Measurement, correlation, sensitivity analysis, and comparisons with literature reports, Journal of Thermal Analysis and Calorimetry, 117, 2, 675-681
  • 12. Fadzilah M., Nazar R., Norihan M., Pop I., 2011, MHD boundary-layer flow and heat transfer over a stretching sheet with induced magnetic field, Journal of Heat and Mass Transfer, 47, 155-162
  • 13. Fang T., Zhang J., Yao S., 2009, Slip MHD viscous flow over a stretching sheet – An exact solution, Communications in Nonlinear Science and Numerical Simulation, 14, 3731-3737
  • 14. Gorder R.A.V., Sweet E., Vajravelu K., 2010, Nano boundary layers over stretching surfaces, Communications in Nonlinear Science and Numerical Simulation, 15, 1494-1500
  • 15. Gupta P.S., Gupta A.S., 1977, Heat and mass transfer on a stretching sheet with suction or blowing, The Canadian Journal of Chemical Engineering, 55, 744-746
  • 16. Hamad M.A.A., Ferddows M., 2012, Similarity solutions to viscous flow and heat transfer of nanofluid over nonlinearly stretching sheet, Applied Mathematics and Mechanics (English Edition), 33, 7, 923-930
  • 17. Hassani M., Mohammad Tabar Nemati H., Domairry G., Noori F., 2011, An analytical solution for boundary layer flow of a nanofluid past a stretching sheet, International Journal of Thermal Sciences, 50, 2256-2263
  • 18. Heris S.Z., Etemad S.G., Esfahany M.N., 2006, Experimental investigation of oxide nanofluids laminar flow convective heat transfer, International Communications in Heat and Mass Transfer, 33, 529-535
  • 19. Ibrahim W., Shankar B., 2013, MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching sheet with velocity, thermal and solutal slip boundary conditions, Computer and Fluids, 75, 1-10
  • 20. Ibrahim W., Shankar B., Nandeppanavar M.M., 2013, MHD stagnation point flow and heat transfer due to nanofluid towards a stretching sheet, International Journal of Heat and Mass Transfer, 56, 1-9
  • 21. Ibrahim W., Shanker B., 2014, Magnetohydrodynamic boundary layer flow and heat transfer of a nanofluid over non-isothermal stretching sheet, ASME Journal of Heat Transfer, 136, 051701-9
  • 22. Ishak A., Nazar R., Pop, I., 2008, Hydro magnetic flow and heat transfer adjacent to a stretching vertical sheet, Journal of Heat and Mass Transfer, 44, 921-927
  • 23. Khan W.A., Pop I., 2010, Boundary-layer flow of a nanofluid past a stretching sheet, International Journal of Heat and Mass Transfer, 53, 2477-2483
  • 24. Khanafer K., Vafai K., Lightstone M., 2003, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, International Journal of Heat and Mass Transfer, 46, 3639-3653
  • 25. Kumar P.M., Kumar J., Tamilarasan R., Sendhilnathan S., Suresh S., 2015, Review on nanofluids theoretical thermal conductivity models, Engineering Journal, 19, 1, 67-83
  • 26. Li C.H., Peterson G.P., 2007, Mixing effect on the enhancement of the effective thermal conductivity of nanoparticle suspensions (nanofluids), International Journal of Heat and Mass Transfer, 50, 4668-4677
  • 27. Mahapatra T.R., Nandy S.K., Gupta A.S., 2009, Magnetohydrodynamic stagnation point flow of a power-law fluid towards a stretching sheet, International Journal of Non-Linear Mechanics, 44, 124-129
  • 28. Nadeem S., Haq R.U., Khan Z.H., 2014, Heat transfer analysis of water-based nanofluid over an exponentially stretching sheet, Alexandria Engineering Journal, 53, 219-224
  • 29. Oztop H.F., Abu-Nada E., 2008, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, International Journal of Heat and Fluid Flow, 29, 1326-1336
  • 30. Postelnicu A., Pop I., 2011, Falkner-Skan boundary layer flow of a power-law fluid past a stretching wedge, Applied Mathematics and Computation, 217, 4359-4368
  • 31. Prasad K.V., Vajravelu K., Datti P.S., 2010, Mixed convection heat transfer over a non-linear stretching surface with variable fluid properties, International Journal of Non-Linear Mechanics, 45, 320-330
  • 32. Rana P., Bhargava R., 2012, Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: A numerical study, Communications in Nonlinear Science and Numerical Simulation, 17, 212-226
  • 33. Sakiadis B.C., 1961a, Boundary layer behavior on continuous moving solid surfaces. I. Boundary layer equations for two-dimensional and axis-symmetric flow, American Institute of Chemical Engineer Journal, 7, 1, 26-28
  • 34. Sakiadis B.C., 1961b, Boundary layer behavior on continuous moving solid surfaces. II. Boundary layer on a continuous flat surface, American Institute of Chemical Engineer Journal, 7, 2, 221-225
  • 35. Sakiadis B.C., 1961c, Boundary layer behavior on continuous moving solid surfaces. III. Boundary layer on a continuous cylindrical surface, American Institute of Chemical Engineer Journal, 7, 3, 467-472
  • 36. Sheikhzadeh G.A., Arefmanesh A., Kheirkhah M.H., Abdollahi R., 2011, Natural convection of Cu-water nanofluid in a cavity with partially active side walls, European Journal of Mechanics B/Fluids, 30, 2, 166-176
  • 37. Vajravelu K., 2001, Viscous flow over a nonlinearly stretching sheet, Applied Mathematics and Computation, 124, 281-288
  • 38. Vajravelu K., Cannon J.R., 2006, Fluid flow over a nonlinearly stretching sheet, Applied Mathematics and Computation, 181, 609-618
  • 39. Vajravelu K., Prasad K.V., Datti P.S., Raju B.T., 2014, MHD flow and heat transfer of an Ostwald-de Waele fluid over an unsteady stretching surface, Ain Shams Engineering Journal, 5, 157-167
  • 40. Wang X.Q., Mujumdar A.S., 2007, Heat transfer characteristics of nanofluids: a review, International Journal of Thermal Sciences, 46, 1-19
  • 41. Wen D., Ding Y., 2004, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, International Journal of Heat and Mass Transfer, 47, 5181-5188
  • 42. Xie H.Q., Lee H., Youn W., Choi M., 2003, Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities, Journal of Applied Physics, 94, 8, 4967-4971
  • 43. Yazdi M.H., Abdullah S., Hashim I., Sopian K., 2011, Slip MHD liquid flow and heat transfer over non-linear permeable stretching surface with chemical reaction, International Journal of Heat and Mass Transfer, 54, 3214-3225
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5f4caf2-b0a1-4393-a4d9-20e23e021386
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.