Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The Chao Phraya River is the main river in the central region. It is essential for consumption, agriculture, industry, and ecosystem conservation. In addition, in the area along the Chao Phraya River, there is agriculture, and industry is a source of conservation for many ecosystems. The support of brine from the sea has influenced the sea. The research aims to find the optimum conditions for applying the eelectro-adsorption technique to reduce salinity of the brackish water that can be used in agriculture. Graphite-type electrodes that are easily available and do not require surface treatment are used. Design/methodology/approach: The research aims to reduce the salinity value of brackish water salinity by DC to DC converter electro-sorption of the sample (790 μS.cm-1) with graphite electrode measuring the reduced electrical conductivity. The variables of salinity reduction, electric potential, temperature, and solution stirring have been studied. Removing ions from electrodes involves ultrasonic vibration and temperature. The important reason that graphite electrodes are used in electrosorption is that graphite is a good conductor. The structure of graphite is such that it has many electrons floating freely between the different layers. Findings: The research found that graphite electrodes could absorb electricity by controlling the electric potential (Charging) at 2.0 V for 25 min and at a temperature of 500C without stirring the solution while absorbing ions. It can reduce the salinity to 777 μS.cm-1, representing 1.64%. The optimum condition for washing electrodes used for 15 min at 2.0 V electrode potential for regeneration was washing electrodes without applying electrode potential (Discharge) in high-temperature water and with ultrasonic vibration. It can effectively wash off ions from the surface of graphite electrodes. Research limitations/implications: The ion adsorption of graphite electrodes was only electrical adsorption. Originality/value: The graphite materials have electrosorption properties at low potential and can be readily renewed by discharging the potential. They do not require surface treatment.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
34--41
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
- Department of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Krungthep, Thailand
autor
- Doctor of Philosophy Program in Engineering, Faculty of Engineering, Rajamangala University of Technology Krungthep, Thailand
Bibliografia
- [1] S. Koonthanakulwong, T. Kijpaisarnsakul et al., The National Research Council of Thailand's research funding, the management of saltwater incursion into the Chao Phraya River, 2018.
- [2] C. Otero, A. Urbina, E.P. Rivero, F.A. Rodriguez, Desalination of brackish water by electro deionisation: Experimental study and mathematical modeling, Desalination 504 (2021) 114803. DOI: https://doi.org/10.1016/j.desal.2020.114803
- [3] A. Subramani, J.G. Jacangelo, Emerging desalination technologies for water treatment: a critical review, Water Research 75 (2015) 164-187. DOI: https://doi.org/10.1016/j.watres.2015.02.032
- [4] S. Al-Amshawee, M.Y.B.M. Yunusa, A.A.M. Azoddein, D.G. Hassell, I.H. Dakhil, H.A. Hasan, Electrodialysis desalination for water and wastewater: a review, Chemical Engineering Journal 380 (2020) 122231. DOI: https://doi.org/10.1016/j.cej.2019.122231
- [5] Y. Oren, Capacitive deionisation (CDI) for desalination and water treatment – past, present and future (a review), Desalination 228/1-3 (2008) 10-29. DOI: https://doi.org/10.1016/j.desal.2007.08.005
- [6] W. Schmickler, Double layer theory, Journal of Solid State Electrochemistry 24/9 (2020) 2175-2176. DOI: https://doi.org/10.1007/s10008-020-04597-z
- [7] L. Zou, G. Morris, D. Qi, Using activated carbon electrode in electrosorptive deionisation of brackish water, Desalination 225/1-3 (2008) 329-340. DOI: https://doi.org/10.1016/j.desal.2007.07.014
- [8] S. Yao, Z. Zhang, Y. Wang, Z. Liu, Z. Li, Simple one-pot strategy for converting biowaste into valuable graphitised hierarchically porous biochar for high efficiency capacitive storage, Journal of Energy Storage 44/A (2021) 103259. DOI: https://doi.org/10.1016/j.est.2021.103259
- [9] L. Hadebe, Z. Cele, B. Gumbi, Properties of porous carbon electrode material derived from biomass of coffee waste grounds for capacitive deionisation, Materials Today: Proceedings 56/4 (2022) 2178-2183. DOI: https://doi.org/10.1016/j.matpr.2021.11.496
- [10] Z. Cao, S. Hu, J. Yu, L. Wang, Q. Yang, H. Song, S. Zhang, Enhanced capacitive deionisation of toxic metal ions using nanoporous walnut shell-derived carbon, Journal of Environmental Chemical Engineering 10/5 (2022) 108245. DOI: https://doi.org/10.1016/j.jece.2022.108245
- [11] D. Deng, M.K. Luhasile, H. Li, Q. Pan, F. Zheng, Y. Wang, A novel layered activated carbon with rapid ion transport through chemical activation of chestnut inner shell for capacitive deionisation, Desalination 531 (2022) 115685. DOI: https://doi.org/10.1016/j.desal.2022.115685
- [12] X. Fang, Y. Wu, L. Xu, L. Gan, Fast removal of bisphenol A by coconut shell biochar incorporated α-MnO2 composites via peroxymonosulfate activation, Journal of Water Process Engineering 49 (2022) 103071. DOI: https://doi.org/10.1016/j.jwpe.2022.103071
- [13] J. Serafin, M. Ouzzine, C. Xing, H. El Ouahabi, A. Kamińska, J. Sreńscek-Nazzal, Activated carbons from the Amazonian biomass andiroba shells applied as a CO 2 adsorbent and a cheap semiconductor material, Journal of CO 2 Utilization 62 (2022) 102071. DOI: https://doi.org/10.1016/j.jcou.2022.102071
- [14] V.N. Kitenge, D.J. Tarimo, K.O. Oyedotun, G. Rutavi, N. Manyala, Facile and sustainable technique to produce low-cost high surface area mangosteen shell activated carbon for supercapacitors applications, Journal of Energy Storage 56/A (2022) 105876. DOI: https://doi.org/10.1016/j.est.2022.105876
- [15] F. Gao, Y.-Q. Xie, Y.-H. Zang, G. Zhou, J.-Y. Qu, M.-B. Wu, A sustainable strategy to prepare porous carbons with tailored pores from shrimp shell for use as supercapacitor electrode materials, New Carbon Materials 37/4 (2022) 752-763. DOI: https://doi.org/10.1016/S1872-5805(21)60046-X
- [16] P.M. Biesheuvel, M.Z. Bazant, R.D. Cusick, T.A. Hatton, K.B. Hatzell, M.C. Hatzell, P. Liang, S. Lin, J.G. Santiago, K.C. Smith, M. Stadermann, X. Su, X. Sun, T.D. Waite, A. van der Wal, J. Yoon, R. Zhao, L. Zou, M.E. Suss, Capacitive Deionization – Defining a Class of Desalination Technologies, Applied Physics 16 (2007) 1-3. DOI: https://doi.org/10.48550/arXiv.1709.05925
- [17] P.D. Sivasubramanian, M. Kumar, V.S. Kirankumar, M.S. Samuel, C.-D. Dong, J.-H. Chang, Capacitive deionisation and electrosorption techniques with different electrodes for wastewater treatment applications, Desalination 559 (2023) 116652. DOI: https://doi.org/10.1016/j.desal.2023.116652
- [18] G. Wang, B. Qian, Q. Dong, J. Yang, Z. Zhao, J. Qiu, Highly mesoporous activated carbon electrode for capacitive deionization, Separation and Purification Technology 103 (2013) 216-221. DOI: https://doi.org/10.1016/j.seppur.2012.10.041
- [19] C.-L. Yeh, H.-C. Hsi, K.-C. Li, C.-H. Hou, Improved performance in capacitive deionisation of activated carbon electrodes with a tunable mesopore and micropore ratio, Desalination 367 (2015) 60-68. DOI: https://doi.org/10.1016/j.desal.2015.03.035
- [20] Z. Zhang, Y. Zhang, C. Jiang, D. Li, Z. Zhang, K. Wang, W. Liu, X. Jiang, Y. Rao, C. Xu, X. Chen, N. Meng, Highly efficient capacitive desalination for brackish water using super activated carbon with ultrahigh pore volume, Desalination 529 (2022) 115653. DOI: https://doi.org/10.1016/j.desal.2022.115653
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5e99f16-b96d-4706-95c0-35ac44245b19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.