PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Numerical analysis of the risk of neck injuries caused by IED explosion under the vehicle in military environments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As a result of an explosion under a military vehicle, the risk of threat to life and health of the crew increases. Examination of this event in terms of the security of soldiers comes down to a complex analysis of the mutual interaction of the body of a soldier, seating and structural elements of the vehicle. As a result, shock wave impacts can cause tremor resulting from the construction of the vehicle and acceleration of the passenger's body. This study attempts to analyze the impact of an explosion of an improvised explosive device (IED) under the military vehicle with the risk of cervical spine injuries of soldiers. The analysis was carried out using numerical methods in the LS-DYNA program and was carried out taking into account the variable displacement values and acceleration recorded during the\ explosion. The study used a model of the body of a soldier in the form of a Hybrid III 50th Male Dummy.
Rocznik
Strony
258--264
Opis fizyczny
Bibliogr. 27 poz., rys., wykr.
Twórcy
  • *Faculty of Mechanical Engineering, Department of Biomedical Engineering, University of Zielona Góra, ul. Licealna 9, 65-417 Zielona Góra, Poland
  • *Faculty of Mechanical Engineering, Department of Biomedical Engineering, University of Zielona Góra, ul. Licealna 9, 65-417 Zielona Góra, Poland
  • Faculty of Mechanical Engineering, Department of Mechanics and Applied Computer Science, Military University of Technology, ul. Gen. S. Kaliskiego 2, 00-908 Warszawa, Poland
autor
  • Faculty of Mechanical Engineering, Department of Mechanics and Applied Computer Science, Military University of Technology, ul. Gen. S. Kaliskiego 2, 00-908 Warszawa, Poland
Bibliografia
  • 1. Bambach M.R., Grzebieta R.H., McIntosh A.S., Mattos G.A. (2013), Cervical and thoracic spine injury from interactions with vehicle roofs in pure rollover crashes, Accident Analysis and Prevention 50, 34– 43.
  • 2. Brzozowski R., Guła P., Sanak T. (2014), The army security in the aspect of threats resulting from the use of improvised explosive devices, Red.: S. Kowalkowski, B. Bębenek, T. Całkowski, Postexplosion soft tissue injuries, National Defence University Publishing House, Warsaw (in polish).
  • 3. Cronin D. (2014), Finite element modeling of potential cervical spine pain sources in neutral position low speed rear impact, Journal of the mechanical behavior of biomedical materials, 33, 55–66.
  • 4. Cusick J.F., Yoganandan N. (2002), Biomechanics of the cervical spine 4: major injuries, Clinical Biomechanics, 17, 1–20.
  • 5. Daffner R.H., Sciulli R.L., Rodriguez S.A., Protech J. (2006), Imaging for evaluation of suspected cervical spine trauma: a 2-year analysis, Injury: International Journal of the Care of the Injured, 37(7), 652–658.
  • 6. Denis, F. (1983), The three column spine and its significance in the classification of acute thorocolumbar spinal injuries, Spine, 8(8), 817–831.
  • 7. DeWit J.A., Cronin D.S. (2012), Cervical spine segment finite element model for traumatic injury prediction, Journal of the Mechanical Behavior of Biomedical Materials, 10, 138–150.
  • 8. Heider N, Denefeld V, Holzwarth A. (2010), Methods for the analysis of global IED effects on military vehicles, 5th European Survivability Workshop, Alesund Norway.
  • 9. Hryciów Z., Borkowski W., Wysocki J., Rybak P., Wiśniewski A. (2013), Experimental researches of safety of armoured personnel carrier crew during collision with obstacle, The Archives of Automotive Engineering, 61, 87-96.
  • 10. Ivancic, P.C., Pearson, A.M., Panjabi, M.M., Ito, S. (2004), Injury of the anterior longitudinal ligament during whiplash simulation, European Spine Journal, 13(1), 61–68.
  • 11. Krzystała E., Mężyk A., Kciuk S. (2011a), Analysis of the influence of the blast on wheeled military vehicle and their crew, Fast Tracked Vehicles, 28(2), 99-110.
  • 12. Krzystała E., Mężyk A., Kciuk S. (2011b), Analysis of threat to crew posed by explosion of charge placed under wheeled armoured vehicle, Jouranl of Science of the Gen. Tadeusz Kosciuszko Military Academy of Land Forcs, 1(159) , 145-154.
  • 13. Leahy P.D., Puttlitz Ch.M. (2012), The effects of ligamentous injury in the human lower cervical spine, Journal of Biomechanics, 45, 2668–2672.
  • 14. Levine R.S. (1994), Head and Neck Injury, Society of Automotive Engineers, USA.
  • 15. Nilakantan G. Tabiei A. (2009), Computational Assessment of occupant Injury Caused by Mine Blasts underneath Infantry Vehicles, Int. J. Vehicle Structures & Systems, 1(1-3), 50-5.
  • 16. Operating Instructions, description and use (2005), 8x8 Wheeled Armored ROSOMAK Tower HITFIST 30 mm, Wojskowe Zakłady Mechaniczne S.A, Siemianowice Slaskie.
  • 17. Panjabi, M.M., Maak, T.G., Ivancic, P.C., Ito, S. (2006), Dynamic intervertebral foramen narrowing during simulated rear impact, Spine, 31(5), 128–134.
  • 18. Pintar F.A. , Yoganandan N., Voo L. (1998), Effect of age and loading rate on human cervical spine injury threshold, Spine Sep, 15;23(18), 1957-62.
  • 19. Protocol HFM-090/TG-25 (2007), The mine detonation process and occupant loading.
  • 20. Ramasamy A., Masouros S.D., Newell N., Hill A.M. (2011), Proud W.G., Brown K.A., Bull A.M.J., Clasper J.C., In-vehicle extremity injuries from improvised explosive devices: current and future foci, Phil. Trans. R. Soc., 366, 160–170.
  • 21. Robertson A., Branfoot T., Barlow I.F., Giannoudies P.V. (2002), Spinal injury patterns resulting from car and motorcycle accidents, Spine, 27(24), 2825–2830.
  • 22. Schmitt K.-U., Niederer P., Muser M., Walz F. (2010), Trauma Biomechanics, Third Edition, Springer, Berlin.
  • 23. Sławiński G. (2012), Pictures of AMV Rosomak after IED explosion, Afghanistan - own resources.
  • 24. Sławiński G., Niezgoda T., Barnat W. (2013), Numerical analysis of the influence of blast wave on human body, Journal of KONES Powertrain and Transport, 20(3), 113-122.
  • 25. Wojtkowski M., Ziółek J., Płomiński J., Waliński T. (2014), The army security in the aspect of threats resulting from the use of improvised explosive devices, Red.: S. Kowalkowski, B. Bębenek, T. Całkowski, Postexplosion analysis musculoskeletal injuries of Polish soldiers in military contingents - preliminary, National Defence University Publishing House, Warsaw (in polish).
  • 26. Yang Y., Liou W.W., Sheng, J.Gorsich, D., Arepally, S., (2013) Shock wave impact simulation of a vehicle occupant using fluid/structure/ dynamics interactions, International Journal of Impact Engineering, 52, 11-22.
  • 27. Yoganandan N., Stemper B.D., Pintar F.A., Maiman D.J., McEntire B.J., (2013), Chancey V.C., Cervical spine injury biomechanics: Applications for under body blast loadings in military environments, Clinical Biomechanics, 28, 602–609.
Uwagi
EN
This investigation was supported by a research grant, as a part of the project DOBR-BIO4/022/13149/2013 financed by NCBiR
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5e950c0-d27b-4414-b25a-d8b7a72b481c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.