PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chłodziarka absorpcyjna w solarnych układach klimatyzacyjnych jako przykład nowoczesnej technologii dla zrównoważonego rozwoju

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Absorption chillers in solar cooling systems as an example of modern technology for sustainable development
Języki publikacji
PL
Abstrakty
EN
The growing demand for electricity and declining fossil fuel resources reduce the availability of energy for the future generations, which is a major threat in the context of sustainable development principle. Currently in Europe more than 50% of electricity comes from coal burning thermal plants. According to data from Europe’s Energy Portal such a rapid exploitation of this energy carrier may cause that it will not be available approximately after 2140. Because of this situation, the duty of the present generation is to improve efficiency of energy use and energy production and to enhance the contribution of alternative sources in general energy demand. This is compliant with the sustainable development principle. According to some researcher a huge potential is in field of cooling generation. About 95% of all installed cooling devices are traditional compressor chillers, which are powered by electricity. In this situation absorption chillers appear to be a good alternative. They are thermally activated appliance powered by heat. That’s create a great opportunity to use energy from renewable resources or waste heat from technological processes. Absorption chillers may cooperate with many heat sources. One of the possibility is the creation of solar cooling system powered by solar energy. In this kind of system absorption device use hot water from solar collectors to initiate refrigeration cycle. It is a very interesting solution, because the biggest cooling demand occurs at the same time as the highest solar radiation is available. Moreover, the sun is the biggest source of energy on the Earth. In terms of solar radiation intensity Poland has quite good conditions. The amount of light received every year is between 950–1250kWh/m2. And about 80% of this value accounts for the warm period of the year from April to September. Absorption chillers has much lower coefficient of performance (COP=0,6–1,2) comparing to compressors chillers (COP=3–5). But they consume much less electricity, which is one of the biggest advantages of this technology. In this paper evaluation and comparison of absorption and compressor chillers used for chilled water production for air conditioning purpose are presented. In case of solar absorption cooling, solar energy contribution to cover energy demand is more than 80%. Operation phase of absorption chiller appears to consume less electrical energy (12 596 kWh) than compressor chiller (20 671 kWh), thus the total GHG emission is associated with this unit and is 6 221 kg CO2e for absorption chiller and 10 209 kgCO2e for compressor chiller.
Rocznik
Strony
1216--1277
Opis fizyczny
Bibliogr. 24 poz., tab., rys.
Twórcy
autor
  • Politechnika Lubelska
Bibliografia
  • 1. Ali A. H. H., Noeres P., Pollerberg C.: Performance assessment of an integrated free cooling and solar powered single-effect lithium bromide-water absorption chiller. Solar Energy, Nr 11, Tom 82, 1021–1030 (2008).
  • 2. Bermejo P., Pino F.J., Rosa F.: Solar absorption cooling plant in Seville. Solar Energy, Nr 8, Tom 84, 1503–1512 (2010).
  • 3. Boyle G.: Renewable Energy: Power for Sustainable Future. The Open University and Oxford University, Oxford, 1996.
  • 4. Cholewa T., Pawłowski A.: Zrównoważone użytkowanie energii w sektorze komunalnym. Rocznik Ochrona Środowiska (Annual Set the Environment Protection), 11, 1165–1178 (2009).
  • 5. Cholewa T., Siuta-Olcha A.: Energetyka – dziś i jutro. Monografie Komitetu Inżynierii Środowiska Vol. 67, Komitet Inżynierii Środowiska, Lublin, 2010.
  • 6. Europe’s Energy Portal: http://www.energy.eu.
  • 7. Florides G.A., Kalogirou S.A., Tassout S.A., Wrobel L.C.: Modelling, simulation and warming impact assessment of a domestic-size absorption solar cooling system. Applied Thermal Engineering, Nr 12, Tom 21, 1313–1325 (2002).
  • 8. Gawłowski S., Listowska-Gawłowska R., Piecuch T.: Uwarunkowania i prognoza bezpieczeństwa energetycznego Polski na lata 2010–2110. Rocznik Ochrona Środowiska (Annual Set the Environment Protection), 12, 127–176 (2010).
  • 9. Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting 2012
  • 10. GUS: Ochrona Środowiska 2010, Główny Urząd Statystyczny, Warszawa 2010.
  • 11. Henning H.-M.: Solar assisted air conditioning of buildings – an overview. Applied Heat Engineering, Nr 10, Tom 27, 1734–1749 (2010).
  • 12. Mazloumi M., Naghashzadegan M., Javaherdeh K.: Simulation of solar lithium bromide – water absorption cooling system with parabolic trough collector. Energy Conversion and Management, Nr 10, Tom 49, 2820–2832 (2008).
  • 13. Mokrzycki E., Uliasz-Bocheńczyk A.: Gospodarka pierwotnymi nośnikami energii w ochronie środowiska przyrodniczego. Rocznik Ochrona Środowiska (Annual Set the Environment Protection), 11, 103–131 (2009).
  • 14. Pawłowski A., Pawłowski L.: Zrównoważony rozwój we współczesnej cywilizacji. Część 1. Środowisko a zrównoważony rozwój. w: Problemy ekorozwoju/Problems of Sustainable Development, Nr 1, Tom 3, 53–65 (2008).
  • 15. Pawłowski A.: How Many Dimen¬sions Does Sustainable Development Have?. Sustainable Development, Nr 2, Tom 16, 81–90 (2008).
  • 16. Pawłowski A.: Teoretyczne uwarunkowania rozwoju zrównoważonego. Rocznik Ochrona Środowiska (Annual Set the Environment Protection), 11, 985–994 (2009).
  • 17. Pełech A.: Wentylacja i klimatyzacja – podstawy, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2008.
  • 18. Różycka E.: Analiza opłacalności niekonwencjonalnych źródeł energii w projektowanym budynku jednorodzinnym, Kolektory słoneczne, pompy ciepła. Rocznik Ochrona Środowiska (Annual Set the Environment Protection), 11, 1353–1371 (2009).
  • 19. Rusowicz A.: Tendencje rozwojowe urządzeń chłodniczych absorpcyjnych. XXXIX konferencja Naukowo-Techniczna „Dni Chłodnictwa”, Poznań, 283–290 (2007).
  • 20. Sikorska-Bączek R.: Wykorzystanie energii solarnej do zasilania ziębiarki absorpcyjnej. Ciepłownictwo, Ogrzewnictwo, Wentylacja, Nr 11, 67–68 (2007).
  • 21. Syed A., Izquierdo M., Rodriguez P., Maidment G., Missenden J., Lecuona A., Tozer R.: A novel experimental investigation of a solar cooling system in Madrid. International Journal of Refrigeration, Nr 6, Tom 28, 859–871 (2005).
  • 22. WCED: Our Common Future, The Report of the World Commission on Environment and Development, Oxford University Press, Nowy Jork, 1987.
  • 23. Zalewski W.: Systemy i urządzenia chłodnicze, Kraków, 2010.
  • 24. Żelazna A., Pawłowski A,: Korzyści środowiskowe z wykorzystania systemów solarnych na przykładzie budynku jednorodzinnego. Proceedings of ECOpole, Vol. 5(2), 649–654 (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5e7831e-e9df-4a25-b345-61becc972590
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.