PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sail catamaran with hybrid propulsion, design, theoretical and experimental studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The development of modern lithium batteries and propulsion systems now allows the use of complex propulsion systems for vessels of various sizes. As part of the research and implementation project, a parallel hybrid drive system was designed, built and then tested in the laboratory. The experimental studies conducted allowed for the measurements of power, fuel consumption and electric power distribution in various operating modes of the propulsion system. The research proves that in the analysed case, the hybrid parallel system meets the demand for electric energy during a typical cruise scenario, and thus there is no need to install a power generator on the yacht.
Rocznik
Tom
Strony
12--18
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Gdańsk University of Technology Narutowicza 11/12 80-233 Gdańsk Poland
  • Gdańsk University of Technology Narutowicza 11/12 80-233 Gdańsk Poland
  • Gdańsk University of Technology Narutowicza 11/12 80-233 Gdańsk Poland
  • Gdańsk University of Technology Narutowicza 11/12 80-233 Gdańsk Poland
Bibliografia
  • 1. N. Xiao, R. Zhou, X. Xu, and X. Lin, “Study on Vibration of Marine Diesel-Electric Hybrid Propulsion System,” Math. Probl. Eng., vol. 2016, 2016, doi: 10.1155/2016/8130246.
  • 2. O. B. Inal, J. F. Charpentier, and C. Deniz, “Hybrid power and propulsion systems for ships: Current status and future challenges,” Renewable and Sustainable Energy Reviews, vol. 156, p. 111965, Mar. 01, 2022, doi: 10.1016/j. rser.2021.111965.
  • 3. N. R. Ammar and I. S. Seddiek, “Evaluation of the environmental and economic impacts of electric propulsion systems onboard ships: case study passenger vessel,” Environ. Sci. Pollut. Res., vol. 28, no. 28, pp. 37851–37866, Jul. 2021, doi: 10.1007/s11356-021-13271-4.
  • 4. P. Serra and G. Fancello, “Towards the IMO’s GHG goals: A critical overview of the perspectives and challenges of the main options for decarbonizing international shipping,” Sustain., vol. 12, no. 8, 2020, doi: 10.3390/su12083220.
  • 5. V. Ruggiero, “New methodology to approach project of small hybrid propulsion passenger ferries for Italian scenario,” in 2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2020, 2020, pp. 425–429, doi: 10.1109/SPEEDAM48782.2020.9161881.
  • 6. C. A. Reusser and J. Perrez Osses, “Challenges for Zero-Emissions Ship,” J. Mar. Sci. Eng., vol. 1042, no. 9(10), pp. 1–19, 2021, doi: 10.3390/jmse9101042.
  • 7. J. Ling-Chin and A. P. Roskilly, “A comparative life cycle assessment of marine power systems,” Energy Convers. Manag., vol. 127, pp. 477–493, Nov. 2016, doi: 10.1016/j. enconman.2016.09.012.
  • 8. J. Kropiwnicki, “Application of Stirling engine type alpha powered by the recovery energy on vessels,” Polish Marit. Res., vol. 27, no. 1, pp. 96–106, 2020, doi: 10.2478/pomr-2020-0010.
  • 9. V. Ruggiero and F. Morace, “Innovative Use of Hybrid Propulsion System in Fast Passenger Ferries over 300 Passengers and 20 Knots,” in 12th Symposium on High Performance Marine Vehicles, 2020, no. October, p. 10, doi: 10.3233/pmst200044.
  • 10. A. R. Shekhar, M. H. Parekh, and V. G. Pol, “Worldwide ubiquitous utilization of lithium-ion batteries: What we have done, are doing, and could do safely once they are dead?,” Journal of Power Sources, vol. 523, p. 231015, Mar. 01, 2022, doi: 10.1016/j.jpowsour.2022.231015.
  • 11. Q. Cheng, B. Marchetti, X. Chen, S. Xu, and X. D. Zhou, “Separation, purification, regeneration and utilization of graphite recovered from spent lithium-ion batteries – A review,” Journal of Environmental Chemical Engineering, vol. 10, no. 2, p. 107312, Apr. 01, 2022, doi: 10.1016/j. jece.2022.107312.
  • 12. C. H. Choi et al., “Development and demonstration of PEM fuel-cell-battery hybrid system for propulsion of tourist boat,” Int. J. Hydrogen Energy, vol. 41, no. 5, pp. 3591–3599, 2016, doi: 10.1016/j.ijhydene.2015.12.186.
  • 13. A. M. Bassam, A. B. Phillips, S. R. Turnock, and P. A. Wilson, “Design, modelling and simulation of a hybrid fuel cell propulsion system for a domestic ferry,” PRADS 2016 – Proc. 13th Int. Symp. Pract. Des. Ships Other Float. Struct., no. September, 2016.
  • 14. V. Alfonsín, A. Suarez, A. Cancela, A. Sanchez, and R. Maceiras, “Modelization of hybrid systems with hydrogen and renewable energy oriented to electric propulsion in sailboats,” Int. J. Hydrogen Energy, vol. 39, no. 22, pp. 11763–11773, 2014, doi: 10.1016/j.ijhydene.2014.05.104.
  • 15. A. Stateczny, P. Burdziakowski, K. Najdecka, and B. Domagalska-Stateczna, “Accuracy of trajectory tracking based on nonlinear guidance logic for hydrographic unmanned surface vessels,” Sensors (Switzerland), vol. 20, no. 3, 2020, doi: 10.3390/s20030832.
  • 16. W. Litwin and A. Olszewski, “Assessment of possible application of water lubricated sintered brass slide bearing for marine propeller shaft,” Polish Marit. Res., vol. 19, no. 4, 2012, doi: 10.2478/v10012-012-0040-4.
  • 17. W. Litwin, “Water lubricated marine stern tube bearings – Attempt at estimating hydrodynamic capacity,” 2010, doi: 10.1115/IJTC2009-15068.
  • 18. J. Kowalski, W. Leśniewski, and W. Litwin, “Multi-source-supplied parallel hybrid propulsion of the inland passenger ship STA.H. Research work on energy efficiency of a hybrid propulsion system operating in the electric motor drive mode,” Polish Marit. Res., vol. 20, pp. 20–27, 2013, doi: 10.2478/pomr-2013-0031.
  • 19. W. Litwin, W. Leśniewski, and J. Kowalski, “Energy Efficient and Environmentally Friendly Hybrid Conversion of Inland Passenger Vessel,” Polish Marit. Res., vol. 24, no. 4, 2017, doi: 10.1515/pomr-2017-0138.
  • 20. W. Leśniewski, D. Piątek, K. Marszałkowski, and W. Litwin, “Small Vessel with Inboard Engine Retrofitting Concepts; Real Boat Tests, Laboratory Hybrid Drive Tests and Theoretical Studies,” Energies, vol. 13, pp. 1–13, 2020, doi: 10.3390/ en13102586.
  • 21. W. Litwin, W. Lesniewski, D. Piatek, and K. Niklas, “Experimental research on the energy efficiency of a parallel hybrid drive for an inland ship,” Energies, vol. 12, no. 9, 2019, doi: 10.3390/en12091675.
  • 22. P. Gełesz, A. Karczewski, J. Kozak, W. Litwin, and Ł. Piątek, “Design Methodology for Small Passenger Ships on the Example of the Ferryboat Motława 2 Driven by Hybrid Propulsion System,” Polish Marit. Res., vol. 24, no. s1, pp. 67–73, 2017, doi: 10.1515/pomr-2017-0023.
  • 23. M. Kunicka and W. Litwin, “Energy efficient small inland passenger shuttle ferry with hybrid propulsion – concept design, calculations and model tests,” Polish Marit. Res., vol. 26, no. 102, pp. 85–92, 2019, doi: 10.2478/pomr-2019-0028.
  • 24. M. Kunicka and W. Litwin, “Energy demand of short-range inland ferry with series hybrid propulsion depending on the navigation strategy,” Energies, vol. 12, no. 18, pp. 1–14, 2019, doi: 10.3390/en12183499.
  • 25. A. Karczewski and J. Kozak, “Variant designing in the preliminary small ship design process,” Polish Marit. Res., vol. 24, no. 2, pp. 77–82, 2017, doi: 10.1515/pomr-2017-0052.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5e59411-0cab-4fec-9531-2cccbd2814b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.