Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wpływ niskotemperaturowej obróbki plazmowej na właściwości gumy
Języki publikacji
Abstrakty
The effect of the distance (0.5 and 5 mm) and exposure time (10 and 30 s) of the atmospheric plasma on the structure and surface properties (contact angle, adhesion) of unvulcanized rubber was examined. FT-IR and SEM were used to assess the structure. After plasma treatment, a higher intensity of the OH and COO- bands was observed, while the intensity of the bands from methylene groups decreased. SEM showed that plasma significantly reduces the size and number of agglomerates, resulting in a more uniform structure. The plasma distance has a significant effect on the surface properties of the rubber, with a better effect achieved at a smaller distance (0.5 mm). In this case, the rubber character changed from hydrophobic to hydrophilic, which is related to the introduction of oxygen species. A greater plasma distance (5 mm), regardless of the exposure time, resulted in a lower adhesion force. The exposure time had no significant effect on the tested rubber properties.
Zbadano wpływ odległości (0,5 i 5 mm) oraz czasu ekspozycji (10 i 30 s) plazmy atmosferycznej na strukturę i właściwości powierzchniowe (kąt zwilżania, adhezja) niewulkanizowanej gumy. Do oceny struktury stosowano FT-IR i SEM. Po obróbce plazmą zaobserwowano większą intensywność pasm pochodzących od grup OH i COO-, natomiast intensywność pasm pochodzących od grup metylenowych zmniejszyła się. Metodą SEM wykazano, że plazma znacząco zmniejsza wielkość i liczbę aglomeratów, czego efektem jest bardziej jednorodna struktura. Odległość plazmy ma istotny wpływ na właściwości powierzchniowe gumy, przy czym lepszy efekt uzyskano przy mniejszej odległości (0,5 mm). W tym przypadku charakter gumy zmienił się z hydrofobowego na hydrofilowy, co jest związane z wprowadzeniem ugrupowań tlenowych. Większa odległość próbki od plazmy (5 mm), niezależnie od czasu ekspozycji, skutkowała mniejszą siłą adhezji. Czas ekspozycji nie miał istotnego wpływu na badane właściwości gumy.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
245--253
Opis fizyczny
Bibliogr. 56 poz., fot., tab., wykr.
Twórcy
autor
- Department of Materials Technologies and Environment, Faculty of Industrial Technologies in Púchov, Alexander Dubček University of Trenčín, I. Krasku 491/30, 020 01 Púchov, Slovak Republic
autor
- Department of Materials Technologies and Environment, Faculty of Industrial Technologies in Púchov, Alexander Dubček University of Trenčín, I. Krasku 491/30, 020 01 Púchov, Slovak Republic
autor
- Department of Materials Technologies and Environment, Faculty of Industrial Technologies in Púchov, Alexander Dubček University of Trenčín, I. Krasku 491/30, 020 01 Púchov, Slovak Republic
autor
- Department of Materials Technologies and Environment, Faculty of Industrial Technologies in Púchov, Alexander Dubček University of Trenčín, I. Krasku 491/30, 020 01 Púchov, Slovak Republic
autor
- Department of Materials Technologies and Environment, Faculty of Industrial Technologies in Púchov, Alexander Dubček University of Trenčín, I. Krasku 491/30, 020 01 Púchov, Slovak Republic
autor
- Department of Materials Technologies and Environment, Faculty of Industrial Technologies in Púchov, Alexander Dubček University of Trenčín, I. Krasku 491/30, 020 01 Púchov, Slovak Republic
autor
- Department of Materials Technologies and Environment, Faculty of Industrial Technologies in Púchov, Alexander Dubček University of Trenčín, I. Krasku 491/30, 020 01 Púchov, Slovak Republic
autor
- Department of Materials Technologies and Environment, Faculty of Industrial Technologies in Púchov, Alexander Dubček University of Trenčín, I. Krasku 491/30, 020 01 Púchov, Slovak Republic
autor
- Department of Materials Technologies and Environment, Faculty of Industrial Technologies in Púchov, Alexander Dubček University of Trenčín, I. Krasku 491/30, 020 01 Púchov, Slovak Republic
autor
- Department of Materials Technologies and Environment, Faculty of Industrial Technologies in Púchov, Alexander Dubček University of Trenčín, I. Krasku 491/30, 020 01 Púchov, Slovak Republic
autor
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
- [1] Galmiz O., Kelar Tučeková Z., Kelar J. et al.: AIP Advances. Fluids and Plasmas 2019, 9(10), 105013. https://doi.org/10.1063/1.5124149
- [2] Štepánová V., Skácelová D., Slavíček P., Černák M.: Chemické Listy 2019, 106, 1495.
- [3] Homola T., Buršíková V., Sťahel P. et al.: “Diffuse coplanar surface barrier discharge pre-treatment for improving coating properties”, Materials from the NANOCON 2014, Brno, Czech Republic, November 5–7, 2014. p. 437. https://doi.org/10.37904/nanocon.2021.4311
- [4] Štepánová V., Siheník S., Šrámková P. et al.: “Optimisation of the DCSBD roll-to-roll treatment of LLDPE/PA turbular foil using rollers of differ¬ent electrical resistance”, Materials from the 2nd Plasma Nanotechnologies and Bioapplications Workshop, Broumov, Czech Republic, October 11–14, 2021, p. 16.
- [5] Kelar J., Čech J., Slavíček P.: Acta Polytechnica 2015, 55(2), 109. https://doi.org/10.14311/AP.2015.55.0109
- [6] Talviste R., Galmiz O., Stupavská M. et al.: Wood Science and Technology 2020, 54, 651. https://doi.org/10.1007/s00226-020-01175-4
- [7] Peters F., Hünnekens B., Wieneke S. et al.: Journal of Physics D: Applied Physics 2017, 50(47), 475206. https://doi.org/10.1088/1361-6463/aa8fad
- [8] Dahle S., Pilko M., Žigon J. et al.: Cellulose 2021, 28, 8055. https://doi.org/10.1007/s10570-021-04014-2
- [9] Šrámková P., Zahoranová A., Kelar J. et al.: Science Reports 2020, 10, 9478. https://doi.org/10.1038/s41598-020-66423-w
- [10] Černák M., Černáková L., Hudec I. et al.: The European Physical Journal - Applied Physics 2009, 47(2), 22806. https://doi.org/10.1051/epjap/2009131
- [11] Janík R., Kohutiar M., Dubec A. et al.: Materials 2022, 15(13), 4658. https://doi.org/10.3390/ma15134658
- [12] Gerullis S., Kretzschmar B. S-M., Pfuch A. et al.: Plasma Processes and Polymers 2018, 15(10), 1800058. https://doi.org/10.1002/ppap.201800058
- [13] Štěpánová V., Šrámková P., Sihelník S. et al.: Vacuum 2021, 183, 109887. https://doi.org/10.1016/j.vacuum.2020.109887
- [14] Janík R., Kohutiar M., Pajtášová M. et al.: IOP Conference Series: Materials Science and Engineering 2020, 776, 012090. https://doi.org/10.1088/1757-899X/776/1/012090
- [15] Čech J., Brablec A., Černák M. et al.: European Physical Journal D 2017, 71, 27. https://doi.org/10.1140/epjd/e2016-70607-5
- [16] Čech J., Sťahel P., Navrátil Z.: European Physical Journal D 2009, 54, 259. https://doi.org/10.1140/epjd/e2009-00013-1
- [17] Lazovic S., Puac N., Radic N. et al.: Publications of the Astronomical Observatory of Belgrade 2008, 84, 401.
- [18] Tučeková Z., Zahoranová A., Ruščák M. et al.: “Optical emission spectroscopy of diffuse coplanar surface barrier dischrage”, Materials from the 22nd Annual Conference of Doctoral Students - WDS 2013, Prague, Czech Republic, June 4-7, 2013, p. 144.
- [19] Hansen L., Reck K., Kersten H.: Journal of Physics D: Applied Physics 2019, 52, 325201. https://doi.org/10.1088/1361-6463/ab216c
- [20] Čech J., Zemánek M., Sahel P. et al.: Acta Polytechnica 2014, 54(6), 383. https://doi.org/10.14311/AP.2014.54.0383
- [21] Čech J., Brablec A., Sťahel P. et al.: “Influence of electrode temperature on plasma parameters of diffuse coplanar surface barrier discharge”, Materials from the 28th ICPIG, Prague, Czech Republic, July 15–20, 2007, p. 1110.
- [22] Kormuda M., Homola T., Matousek J. et al.: Polymer Degradation and Stability 2012, 97(4), 547. https://doi.org/10.1016/j.polymdegradstab.2012.01.014
- [23] Čech J., Hanusová J., Sťahel P. et al.: Open Chemistry 2015, 13, 528. https://doi.org/10.1515/chem-2015-0062
- [24] Janík R., Kohutiar M., Pajtášová M. et al.: Materials Science and Engineering Technology 2022, 53(4), 494. https://doi.org/10.1002/mawe.202100368
- [25] Krmelová V., Janík R., Kopal I.: Zeszyty Naukowe Wyższej Szkoły Zarządzania Ochroną Pracy W Katowicach 2018, 14, 95. https://doi.org/10.32039/WSZOP/1895-3794-2018-09
- [26] Tučeková Z., Kučerová K., Zahoranová A. et al.: “Parameters of Plasma Generated by Diffuse Coplanar Surface Barrier Discharge Used for Inactivation of Escherichia Coli”, Materials from the WDS’15 Proceedings of Contributed Papers — Physics, Prague, Czech Republic, 2–4 June, 2015, p. 187.
- [27] Prysiazhnyi B., Vasina P., Panyala N.R. et al.: Surface Coatings and Technology 2012, 206(11-12), 3011. https://doi.org/10.1016/j.surfcoat.2011.12.039
- [28] Homola T., Matoušek J., Kormunda M. et al.: Plasma Chemistry and Plasma Processing 2013, 33(5), 881. https://doi.org/10.1007/s11090-013-9467-3
- [29] Šimor M., Ráheľ J., Vojtek P. et al.: Applied Physics Letters 2002, 81, 2716. https://doi.org/10.1063/1.1513185
- [30] Romero-Sanchez M.D., Martín-Martínez J.M.: International Journal of Adhesion and Adhesives 2006, 26(5), 345. https://doi.org/10.1016/j.ijadhadh.2005.05.002
- [31] Moreno-Couranjou M., Choquet P., Guillot G. et al.: Plasma Processes and Polymers 2009, 6(S1), S397. https://doi.org/10.1002/ppap.200930908
- [32] Praveen K.M., Pious C.V., T. Sabu T., Grohens Y.: “Relevance of Plasma Processing on Polymeric Materials and Interfaces” in “Non-Thermal Plasma Technology for Polymeric Materials: Applications in Composites, Nanostructured Materials, and Biomedical Fields” (T. Sabu, M. Mozetič, U. Cvelbar, P. Špatenka, K.M. Praveen) Matthew Deans, Elsevier, Amsterdam 2019, p. 1. https://doi.org/10.1016/B978-0-12-813152-7.00001-9
- [33] Camargo J.S.G., Menzes A.J., Cruz N.C. et al.: Materials Research 2017, 20, 842. http://dx.doi.org/10.1590/1980-5373-MR-2016-1111
- [34] Parvathy N., Jomon J., Jemy J. et al.: “Spectroscopic and Mass Spectrometry Analyses of Plasma-Activated Polymeric Materials” in “Non-Thermal Plasma Technology for Polymeric Materials: Applications in Composites, Nanostructured Materials, and Biomedical Fields” (T. Sabu, M. Mozetič, U. Cvelbar, P. Špatenka, K.M. Praveen) Matthew Deans, Elsevier, Amsterdam 2019, p. 319. https://doi.org/10.1016/B978-0-12-813152-7.00012-3
- [35] Basak G.C., Bandyopadhyay A., Neogi S. et al.: Applied Surface Science 2011, 257(7), 2891. https://doi.org/10.1016/j.apsusc.2010.10.087
- [36] Romero-Sánchez M.D., Martín-Martínez J.M.: International Journal of Adhesion and Adhesives 2006, 26(5), 345. https://doi.org/10.1016/j.ijadhadh.2005.05.002
- [37] Kenth S.J.: “Surface Modification of Plastics” in “Applied Plastics Engineering Handbook, Second Edition” (Meyer K.) Elsevier, Amsterdam 2017, p. 443. https://doi.org/10.1016/B978-0-323-39040-8.00020-1
- [38] Pator-Blas M. M., Martin-Martínez J. M., Dillard J. G.: Surface and Interface Analysis 1998, 26(5), 385. https://doi.org/10.1002/(SICI)1096-9918(19980501)26:5<385: AID-SIA384>3.0.CO;2-K
- [39] Basak G.C., Bandyopadhyay A., Neogi S. et al.: Applied Surface Science 2011, 257(7), 2891. https://doi.org/10.1016/j.apsusc.2010.10.087
- [40] Zhang X., Zhu X., Liang M. et al.: Journal of Applied Polymer Science 2009, 114(2), 1118. https://doi.org/10.1002/app.30626
- [41] Rolere S., Liengprayoon S., Vaysse L. et al.: Polymer Testing 2015, 43, 83. https://doi.org/10.1016/j.polymertesting.2015.02.011
- [42] Intapun J., Rungruang T., Suchat S. et al.: Polymers 2021, 13(7), 1109. https://doi.org/10.3390/polym13071109
- [43] Riba J.R., Mansilla M.A., Canals T. et al.: Materials Research 2019, 22, e20180415.https://doi.org/10.1590/1980-5373-MR-2018-0415
- [44] Ginting E.M., Bukit M., Motlan et al.: Journal of Physics: Conference Series 2020, 1428, 012024. https://doi.org/10.1088/1742-6596/1428/1/012024
- [45] Smith B.C.: Spectroscopy 2022, 37, 8. https://doi.org/10.56530/spectroscopy.mz6968v1
- [46] Bai C., Gong Z., An L. et al.: Friction 2021, 9(3), 627. https://doi.org/10.1007/s40544-020-0436-6
- [47] Moreno-Couranjou M., Choquet P., Guillot J. et al.: Plasma Processes and Polymers 2010, 7(12), 963. https://doi.org/10.1002/ppap.201000045
- [48] Torregrosa-Coque R., Martín-Martínez J.M.: Plasma Processes and Polymers 2011, 8(11), 1080. https://doi.org/10.1002/ppap.201100013
- [49] Henry A., Vallat M-F., Noel C. et al.: Plasma Process and Polymers 2015, 12(10), 1139. https://doi.org/10.1002/ppap.201400241
- [50] Nistico R., Lavagna L., Boot E.A. et al.: Plasma Process and Polymers 2021, 18(9), 2100081. https://doi.org/10.1002/ppap.202100081
- [51] Pastor Blaz M.M., Férrandiz-Goméz T.P., Martín Martínez J.M.: Surface and Interface Analysis 2000, 30, 7.
- [52] Ortíz-Magán A.B., Pator Blas M.M.: Plasma Process and Polymers 2008, 5, 681. https://doi.org/10.1002/ppap.200700173
- [53] Cheng X., Chen H., Huang S. et al.: Jorunal of Applied Polymer Science. 2012, 126, 1837. https://doi.org/10.1002/app.36907
- [54] Salaeh S., Nakason C.: Polymer Composites 2012, 33, 489. https://doi.org/10.1002/pc.22169
- [55] Moraes J. H., da Silva Sobrinho A. S., Maciel H. S. et al.: Journal of Physics D: Applied Physics 2007, 40, 7747. https://doi.org/10.1088/0022-3727/40/24/022
- [56] Shen M., Zhang Z., Peng X., Lin X.: Applied Physics A 2017, 123, 601. https://doi.org/10.1007/s00339-017-1214-9
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5e19607-fe48-43e3-9a51-aa02f1142cdd