PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrothermal metasomatism of a peralkaline granite pegmatite, Khaldzan Buragtag massif, Mongolian Altai; complex evolution of REE-Nb minerals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The low-temperature hydrothermal alteration of certain rare-metal minerals is recorded in a quartz-epidote metasomatite from the Tsakhirin Khuduk occurrence in the Khaldzan-Buragtag Nb-REE-Zr deposit, Mongolian Altai. A peralkaline granitic pegmatite was metasomatized by hydrothermal fluids released from associated intrusions, with the formation of, inter alia, chevkinite-(Ce), fergusonite-(Nd) and minerals of the epidote group. The textural pattern indicates recrystallization and coarsening of these phases. Later, low-temperature alteration byfluids resulted in the chevkinite-(Ce) being replaced by complex titanite-TiO2-cerite-(Ce)-hingganite-hydroxylbastnäsite-(Ce) assemblages. Calcite formed late-stage veins and patches. The hydrous fluids were poor in F and CO2 but had high Ca contents.
Rocznik
Strony
473--491
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
  • Institute of Geochemistry, Mineralogy and Petrology, Faculty of Geology of the University of Warsaw, Al. Żwirki i Wigury, 93, PL-02-089 Warszawa, Poland
  • Institute of Geochemistry, Mineralogy and Petrology, Faculty of Geology of the University of Warsaw, Al. Żwirki i Wigury, 93, PL-02-089 Warszawa, Poland
  • Institute of Geochemistry, Mineralogy and Petrology, Faculty of Geology of the University of Warsaw, Al. Żwirki i Wigury, 93, PL-02-089 Warszawa, Poland
autor
  • Institute of Ore Deposits, Russian Academy of Sciences, Moscow 119107, Russia
autor
  • Institute of Geochemistry, Mineralogy and Petrology, Faculty of Geology of the University of Warsaw, Al. Żwirki i Wigury, 93, PL-02-089 Warszawa, Poland
  • Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
Bibliografia
  • 1. Andreev, G.V. and Ripp, G.S. 1996. Rare-metal epidotequartz metasomatites of the Khaldzan Buregteg massif. Proceedings of the Russian Mineralogical Society, 125, 24–30. [In Russian]
  • 2. Andreev, G.V., Ripp, G.S., Sharakshinov, A.O. and Minin, A.D. 1994. Rare-metal Mineralization in Alkaline Granitoids of Western Mongolia, pp. 1–137. BNTS SO RAN, Ulan Ude. [In Russian]
  • 3. Armbruster, T., Bonazzi, P., Akasaka, M., Bermanec, V., Chopin, C., Giere, R., Heuss-Assbichler, S., Liebscher, A., Menchett,e, S., Pan, Y. and Pasero, M. 2006. Recommended nomenclature of epidote-group minerals. European Journal of Mineralogy, 18, 551–567.
  • 4. Bagiński, B., Macdonald, R., Dzierżanowski, P., Zozulya, D. and Kartashov, P.M. 2015. Hydrothermal alteration of chevkinite-group minerals: products and mechanisms. Part 1. Hydration of chevkinite-(Ce). Mineralogical Magazine, 79, 1019–1037.
  • 5. Bagiński, B., Zozulya, D., Macdonald, R., Kartashov, P. and Dzierżanowski, P. 2016. Low-temperature hydrothermal alteration of a rare-metal rich quartz-epidote metasomatite from the El’ozero deposit, Kola Peninsula, Russia. European Journal of Mineralogy. DOI: 10.1127.ejm/2016/0028-2552.
  • 6. Berger, A., Gnos, E., Janots, E., Fernandez, A. and Giese, J. 2008. Formation and composition of rhabdophane, bastnäsite and hydrated thorium minerals during alteration: implications for geochronology and low-temperature processes. Chemical Geology, 254, 238–248.
  • 7. Cassidy, K.F., Groves, D.I. and Binns, R.A. 1988. Manganoan ilmenite formed during regional metamorphism of Archean mafic and ultramafic rocks from Western Australia. The Canadian Mineralogist, 26, 999–1012.
  • 8. Gieré, R. and Sorensen, S.S. 2004. Allanite and other REE-rich epidote group minerals. In: A. Liebscher and G. Franz (Eds), Epidotes. Reviews in Mineralogy and Geochemistry, 56, 431–493.
  • 9. Gramaccioli, C.M., Diella, V. and Demartin, F. 1999. The role of fluoride complexes in REE geochemistry and the importance of 4f electrons: some examples in minerals. European Journal of Mineralogy, 11, 983–992.
  • 10. Gysi, A.P. and Williams-Jones, A.E. 2013. Hydrothermal mobilization of pegmatite-hosted REE and Zr at Strange Lake, Canada: A reaction path model. Geochimica et Cosmochimica Acta, 122, 324–352.
  • 11. Holtstam, D. and Andersson, U.B. 2007. The REE minerals of the Bastnas-type deposits, south-central Sweden. The Canadian Mineralogist, 45, 1073–1114.
  • 12. Jarosewich, E and Boatner, L.A. 1991. Rare-earth element reference samples for electron microprobe analysis. Geostandards Newsletter, 15, 397–399.
  • 13. Jiang, N. 2006. Hydrothermal alteration of chevkinite-(Ce) in the Shuiquangou syenitic intrusion, northern China. Chemical Geology, 227, 100–112.
  • 14. Kartashov, P.M. 1994. Zr- and Nb-bearing varieties of chevkinite-(Ce) and their alteration products, first occurrence in Mongolia. Ninth IAGOD Symposium, Beijing, 2, 696–697.
  • 15. Kartashov, P.M., Voloshin, A.V., and Pakhomovsky, Ya.A. 1993. Zonal crystalline gadolinite from alkali granite pegmatitesof the Khaldzan–Buregtega (Mongolian Altai), Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 122, 65–79.
  • 16. Kartashov, P.M., Ferraris, G., Ivaldi, G., Sokolova, E. and McCammon, C.A. 2002. Ferriallanite-(Ce), CaCeFe3+AlFe2+(SiO4)(Si2O7)O(OH), a new member of the epidote group: description, X-ray and Mössbauer study. The Canadian Mineralogist, 40, 1641–1648.
  • 17. Kovalenko, V.I., Tsaryeva, G.M., Goreglyad, A.V., Yarmolyuk, V.V., Troitsky, V.A., Hervig, R.L., and Farmer, G.L. 1995. The peralkaline granite-related Khaldzan-Buregteg rare metal (Zr, Nb, REE) deposit, Western Mongolia. Economic Geology, 90, 530–547.
  • 18. Kovalenko, V.I., Goregylad ,A.V. and Tsaryeva, G.M. 1985. Khadzan Buregtey massif – a new manifestation of raremetal peralkaline granitoids of MPR. Doklady Akademii Nauk SSSR 280, 954–959. [In Russian]
  • 19. Kynický, J., Chakhmouradian, A.R., Xu C., Krmiček, L. and Galiová, M. 2011. Distribution and evolution of zirconium mineralization in peralkaline granites and associated pegmatites of the Khan Bogd complex, southern Mongolia. The Canadian Mineralogist, 49, 947–965.
  • 20. Liferovich, R.P. and Mitchell, R.H. 2005. Composition and paragenesis of Na-, Nb- and Zr-bearing titanite from Khibina, Russia, and crystal-structure data for synthetic analogues. The Canadian Mineralogist, 43, 795–812.
  • 21. Lumpkin, G.R., Blackford, M.G. and Colella, M. 2013. Chemistry and radiation effects of davidite. American Mineralogist, 98, 275–278.
  • 22. Macdonald, R., Bagiński, B., Kartashov, P., Zozulya, D. And Dzierżanowski, P. 2012. Chevkinite-group minerals from Russia and Mongolia: new compositional data from metasomatites and ore deposits. Mineralogical Magazine, 76, 535–549.
  • 23. Macdonald, R., Bagiński, B., Kartashov, P.M., Zozulya, D. and Dzierżanowski, P. 2015a. Hydrothermal alteration of chevkinite-group minerals. Part 2. Metasomatite from the Keivy massif, Kola Peninsula, Russia. Mineralogical Magazine, 79, 1039–1059.
  • 24. Macdonald, R., Bagiński, B., Kartashov, P.M., Zozulya, D. and Dzierżanowski, P. 2015b. Hydrothermal alteration of a chevkinite-group mineral to a bastnasite-(Ce)-ilmenite- columbite-(Fe) assemblage: interaction with a F, CO2-rich fluid. Mineralogy and Petrology, 109, 659–678.
  • 25. Macdonald, R., Bagiński, B., Kartashov, P.M., Zozulya, D. and Dzierżanowski, P. 2016. Interaction of rare-metal minerals with hydrothermal fluids; evidence from quartz-epidote metasomatites of the Haldzan Buragtag massif, Mongolian Altai. The Canadian Mineralogist
  • 26. Mayer, B.S., Krenn, E. and Finger, F. 2014. Microcrystals of Th-rich monazite (La) with a negative Ce anomaly in metadiorite and their role for documenting Cretaceous metamorphism in the Slavonian Mountains (Croatia). Mineralogy and Petrology, 108, 231–243.
  • 27. Pan, Y., Fleet, M.E. and MacRae, N.D. 1993. Late alteration in titanite (CaTiSiO5): redistribution and remobilization of rare earth elements and implications for U/Pb and Th/Pb geochronology and nuclear waste disposal. Geochimica et Cosmochimica Acta, 57, 355–367.
  • 28. Petrik, I., Broska, I., Lipka; J. and Siman, P. 1995. Granitoid allanite-(Ce) substitution relations, redox conditions and REE distributions (on an example of I-type granitoids, Western Carpathians, Slovakia). Geologica Carpathica, 46, 79–94.
  • 29. Pettke, T., Audetat, A., Schaltegger, U. and Heinrich, C.A. 2005. Magmatic-to-hydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW, Australia). Part II: evolving zircon and thorite trace element chemistry. Chemical Geology, 220, 191–213.
  • 30. Poitrasson, F. 2002. In situ investigations of allanite hydrothermal alteration: examples from calc-alkaline and anorogenic granites of Corsica (southeast France). Contributions to Mineralogy and Petrology, 142, 485–500.
  • 31. Pouchou, J.L. and Pichoir, J.F. 1991. Quantitative analysis of homogeneous or stratified microvolumes applying the model ‘PAP’. In: Newbury H. (Eds), Electron Probe Quantitation, pp. 31–75. Plenum Press; New York.
  • 32. Rolland, Y., Cox, S., Boullier, A.-M., Pennacchioni, G. and Mancktelow, N. 2003. Rare earth and trace element mobility in mid-crustal shear zones: insights from the Mont Blanc Massif (Western Alps). Earth and Planetary Science Letters, 214, 203–219.
  • 33. Salvi, S. and Williams-Jones, A.E. 2006. Alteration, HFSE mineralisation and hydrocarbon formation in peralkaline igneous systems: Insights from the Strange Lake Pluton, Canada. Lithos, 91, 19–34.
  • 34. Salvi, S., Fontan, F., Monchoux, P., Williams-Jones, A.E. and Moine, B. 2000. Hydrothermal mobilization of high field strength elements in alkaline igneous systems: Evidence from the Tamazeght Complex, Morocco. Economic Geology, 95, 559–576.
  • 35. Sokolova, E., Hawthorne, F.C., Della Ventura, G. and Kartashov, P.M. 2004. Chevkinite-(Ce): crystal structure and the effect of moderate radiation-induced damage on siteoccupancy refinement. The Canadian Mineralogist, 42, 1013–1025.
  • 36. Sun, S.-S. and McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders and M.J. Norry (Eds), Magmatism in the ocean basins. Geological Society of London Special Publication 42, 313–345.
  • 37. Timofeev, A., Migdisov, A.A. and Williams-Jones, A.E. 2015. An experimental study of the solubility and speciation of niobium in fluoride-bearing aqueous solutions at elevated temperature. Geochimica et Cosmochimica Acta, 158, 103–111.
  • 38. Uher, P., Ondrejka, M. and Konečný, P. 2009. Magmatic and post-magmatic Y-REE-Th phosphate, silicate and Nb-Ta-Y-REE oxide minerals in A-type metagranite: an example from the Tuřcok massif, the Western Carpathians, Slovakia. Mineralogical Magazine, 73, 1009–1025.
  • 39. Vlach, S.R.F. 2012. Micro-structural and compositional variations of hydrothermal epidote-group minerals from a peralkaline granite, Corupá Pluton, Graciosa Province, South Brazil, and their petrological implications. Annals of the Brazilian Academy of Sciences, 84, 139–157.
  • 40. Vlach, S.R.F. and Gualda, G.A.R. 2007. Allanite and chevkinite in A-type granites and syenites of the Graciosa Province, southern Brazil. Lithos, 97, 98–121.
  • 41. Wand, R.C., Wang, D.Z., Zhao, G.T., Lu, J.J., Chen, X. M. and Xu, S.J. 2001. Accessory mineral record of magma-fluid interaction in the Laoshan I- and A-type granitic complex, Eastern China. Physics and Chemistry of the Earth, A26, 835–849.
  • 42. Zhao, D., Essene, E.J. and Zhang, Y. 1999. An oxygen barometer for rutile-ilmenite assemblages: oxidation state of metasomatic agents in the mantle. Earth and Planetary Letters, 166, 127–137.
Uwagi
EN
This work was financially supported by IGMiP grant BSt 173504/39/2015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5e009d6-cbb1-48f9-a70e-c64f01205bae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.