PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A neural-enhanced active disturbance load-side speed control of an electric drive with a flexible link

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is focused on improvements of the conventional speed controller based on Active Disturbance Rejection Control (ADRC) applied for a two-mass electric drive system. The described ADRC structure is based on load-side speed measurement. The paper compares conventional structure dynamics with overall system behavior in the case plant parameters are changed. The proposed ADRC algorithm extension performs soft controller parameters adjustment to improve the dynamics and plant response. The presented approach accomplishes adaptation capabilities with the use of a Radial Basis Function Neural Network (RBFNN). The article presents the dynamic response of the plant controlled by the conventional ADRC algorithm and the designed neural adaptation extension. The results are based on the performed experimental tests.
Rocznik
Strony
269--289
Opis fizyczny
Bibliogr. 24 poz., fot., rys., wz.
Twórcy
  • Wroclaw University of Science and Technology, Poland
  • Wroclaw University of Science and Technology, Poland
  • Wroclaw University of Science and Technology, Poland
  • Poznan University of Technology, Poland
  • Federal University of Lavras, Brazil
Bibliografia
  • [1] Wang H., Zhang Q., Feng Y., Chen I.M., Robust Terminal Sliding Mode Tracking Control for Flexible Joint Robots, The Proceedings of 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, pp. 5094–5098 (202), DOI: 10.1109/IECON43393.2020.9254927.
  • [2] Yang H., Wei P., Zhang Y., Liu X., Yang L., Disturbance Observer Based on Biologically Inspired Integral Sliding Mode Control for Trajectory Tracking of Mobile Robots, IEEE Access, vol. 7, pp. 48382–48391 (2019), DOI: 10.1109/ACCESS.2019.2907126.
  • [3] Yin Y., Liao M., Lyu P., The dynamic stability analysis of wind turbines under different control strategies, The Proceedings of 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), pp. 2581–2586 (2015), DOI: 10.1109/DRPT.2015.7432683.
  • [4] Ristiana R., Hindersah H., Rohman A.S., Machbub C., Purwadi A., Rijanto E., Torque control using integrated battery-electric vehicle model with flexible shaft, The Proceedings of 4th International Conference on Electric Vehicular Technology (ICEVT), Bali, Indonesia, pp. 24–29 (2017), DOI: 10.1109/ICEVT.2017.8323528.
  • [5] Salehian M., Sattarzadeh S., Talebi H.A., Bayat M., Asehabi A., Vibration suppression of a flexible shaft system using indirect adaptive control, The Proceedings of 3rd International Conference on Control, Instrumentation, and Automation, Tehran, Iran, pp. 301–306 (2013), DOI: 10.1109/ICCIAutom.2013.6912853.
  • [6] Pourebrahim M., Ayati M., Mahjoob M., Design and implementation of PI and fuzzy PID supervisory controllers for a flexible link robot, The Proceedings of 2nd International Conference on Control Science and Systems Engineering (ICCSSE), Singapore, pp. 270–275 (2016), DOI: 10.1109/CCSSE.2016.7784396.
  • [7] Szabat K., Orlowska-Kowalska T., Vibration Suppression in a Two-Mass Drive System Using PI Speed Controller and Additional Feedbacks—Comparative Study, IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 1193–1206 (2007), DOI: 10.1109/TIE.2007.892608.
  • [8] Trung T.V., Furuta T., Akita K., Iwasaki M., Full State Feedback-based Vibration Suppression Control of Flexible- Link Flexible-Joint Robot, The Proceedings of IEEE 30th International Symposium on Industrial Electronics (ISIE), Kyoto, Japan, pp. 1–6 (2021), DOI: 10.1109/ISIE45552.2021.9576460.
  • [9] Tarczewski T., Szczepanski R., Erwinski K., Hu X., Grzesiak L.M., A Novel Sensitivity Analysis to Moment of Inertia and Load Variations for PMSM Drives, IEEE Transactions on Power Electronics, vol. 37, no. 11, pp. 13299–13309 (2022), DOI: 10.1109/TPEL.2022.3188404.
  • [10] Shikata K., Katsura S., Hierarchical Control for Vibration Suppression Through Decoupling of Traveling/Reflected Waves, The Proceedings of 49th Annual Conference of the IEEE Industrial Electronics Society, Singapore, Singapore, pp. 1–6 (2023), DOI: 10.1109/IECON51785.2023.10312496.
  • [11] Vinida K., Chacko M., A novel strategy using H infinity theory with optimum weight selection for the robust control of sensorless brushless DC motor, The Proceedings of IEEE Symposium on Sensorless Control for Electrical Drives (SLED), Nadi, Fiji, pp. 1–5 (2016), DOI: 10.1109/SLED.2016.7518799.
  • [12] Derugo P., Transfer learning for fuzzy control of two-mass drive system using state variables feedback, The Proceedings of 10th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN), East Sarajevo, Bosnia and Herzegovina, pp. 1–6 (2023), DOI: 10.1109/IcETRAN59631.2023.10192221.
  • [13] Wu A.G., Dong R.Q., Zhang Y., He L., Attitude stabilization for flexible spacecraft with inertia uncertainty by a sliding mode control law, The Proceedings of 12th Asian Control Conference (ASCC), Kitakyushu, Japan, pp. 1472−1477 (2019).
  • [14] Han J., From PID to Active Disturbance Rejection Control, IEEE Transactions on Industrial Electronics, vol. 56, no. 3, pp. 900–906 (2009), DOI: 10.1109/TIE.2008.2011621.
  • [15] Qu K., Cheng C., Hua W., Speed fluctuation Suppression of PMSM Based on Repetitive Active Disturbance Rejection Control, The Proceedings of 26th International Conference on Electrical Machines and Systems (ICEMS), Zhuhai, China, pp. 1073–1077 (2023), DOI: 10.1109/ICEMS59686.2023.10345305.
  • [16] Lv X., Zhu J., Qiao T., Song X., Study of PMSM Servo System Based on A Novel Fuzzy Active Disturbance Rejection Controller, The Proceedings of 6th International Conference on Automation, Control and Robotics Engineering (CACRE), Dalian, China, pp. 140–144 (2021), DOI: 10.1109/CACRE52464.2021.9501388.
  • [17] Du Y., Cao W., She J., Fang M., A Comparison Study of Three Active Disturbance Rejection Methods, The Proceedings of 39th Chinese Control Conference (CCC), Shenyang, China, pp. 135−139 (2020), DOI: 10.23919/CCC50068.2020.9189230.
  • [18] Kabziński J., Adaptive friction compensation in two-mass drive system with flexible shaft, Proceedings of 2nd International Conference on Measurement, Information and Control, Harbin, China, pp. 874–878 (2013), DOI: 10.1109/MIC.2013.6758100.
  • [19] Zhong C., Guo Y., Yu Z., A self-adjusting sliding-mode control based on RBF neural network for flexible spacecraft attitude, Proceedings of IEEE International Conference on Information and Automation (ICIA), Yinchuan, China, pp. 207–212 (2013), DOI: 10.1109/ICInfA.2013.6720297.
  • [20] Wu X., Wang C., Xu C., Liu K., Wang G., Sun Z., An Adaptive Control Method Based on Radial Basis Function Neural Network for Variable Stiffness Actuator, Proceedings of IEEE International Conference on Industrial Technology (ICIT), Bristol, United Kingdom, pp. 1–6 (2024), DOI: 10.1109/ICIT58233.2024.10540877.
  • [21] Wicher B., Brock S., Active disturbance rejection control based load side speed controller for two mass system with backlash, Proceedings of IEEE 18th International Power Electronics and Motion Control Conference (PEMC), pp. 645–650 (2018), DOI: 10.1109/EPEPEMC.2018.8522001.
  • [22] Wicher B., ADRC load position controller for two mass system with elastic joint and backlash, Proceedings of 23rd International Conference on Methods & Models in Automation & Robotics (MMAR), pp. 333–338 (2018), DOI: 10.1109/MMAR.2018.8486007.
  • [23] Norris G., Ducard G.J.J., Onder C., Neural networks for control: A tutorial and survey of stability analysis methods, properties, and discussions, Proceedings of International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), pp. 1–6 (2021), DOI: 10.1109/ICECCME52200.2021.9590912.
  • [24] Fadali M.S., On the stability of han’s adrc, Proceedings of American Control Conference, pp. 3597–3601 (2014), DOI: 10.1109/ACC.2014.6859248.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5da6641-a1b7-4eac-90c5-d2667ae7d15c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.