PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Securing Topsoil for Rehabilitation Using Fly Ash in Open-Cast Coal Mines: Effects of Fly Ash on Plant Growth

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przygotowanie wierzchniej warstwy gleby do rekultywacji przy użyciu popiołu lotnego w kopalniach odkrywkowych: wpływ popiołów lotnych na wzrost roślin
Języki publikacji
EN
Abstrakty
EN
Rehabilitation is an important stage in mining operations for environmental conservation. However, the shortage of topsoil makes it difficult to achieve rehabilitation in open-cast coal mines. Securing topsoil by mixing soil with fly ash (FA), which is treated as an industrial waste, is expected to solve this issue in coal mines. While mixing soil with FA makes it possible to secure the topsoil and treat industrial waste simultaneously, the high alkalinity of FA and the dissolution of heavy metals from FA may inhibit plant growth. This study investigated the effects of FA in the topsoil on plant growth via vegetation tests with simulated topsoil mixed with FA using Acacia mangium, a species of flowering tree: the FA mixing ratios were set to 0%, 20%, 40%, 60%, and 100%. The growth of Acacia mangium was inhibited with increasing FA mixing ratio, especially from 60% to 80%. However, the growth rate of Acacia mangium in an FA mixing ratio of 100% was nearly comparable to that in a mixing ratio of 40%. Furthermore, there were no effects of the physical characteristics and pH conditions in the topsoil on the plant growth at any of the mixing ratios; meanwhi- le, the accumulated concentration of Al in the plant body increased significantly at an FA mixing ratio of 60%–80%. This suggests that the accumulation of Al, which inhibits plant growth, including root growth and its functions, in the plant body inhibited the growth of Acacia mangium. Therefore, the most important aspect in terms of rehabilitation concerning the use of FA for securing topsoil is not the mixing ratio of FA but the amount of Al in the FA and the accumulation of Al in the plant body.
PL
Rekultywacja jest ważnym etapem w eksploatacji górniczej wzakresie ochrony środowiska. Brak wierzchniej warstwy gleby utrudnia osiągnięcie efektu rekultywacji w kopalniach odkrywkowych. Oczekuje się, że zabezpieczenie wierzchniej warstwy gleby przez zmieszanie gleby z popiołem lotnym (FA), który jest traktowany jako odpad przemysłowy, rozwiąże ten problem w odkrywkowych kopalniach węgla. Podczas mieszania gleby z FA możliwe jest jednoczesne zabezpieczenie wierzchniej warstwy gleby i utylizacja odpadów przemysłowych. Jednak wysoka alkaliczność FA i rozpuszczanie metali ciężkich z FA może hamować wzrost roślin. W artykule przedstawiono wpływ dodatku FA do wierzchniej warstwy gleby na wzrost roślin poprzez testy roślinności z symulowaną wierzchnią warstwą gleby zmieszaną z FA przy użyciu Acacia mangium i gatunków drzew kwitnących. Proporcje mieszanek FA zostały określone na 0%, 20%, 40%, 60% i 100%. Wzrost Acacia Mangium był hamowany wraz ze wzrostem zawartości FA, zwłaszcza od 60% do 80%. Jednak tempo wzrostu w mieszance FA w proporcji 40% było praktycznie takie jak bez dodatku FA. Ponadto nie zaobserwowano wpływu właściwości fizycznych i warunków pH w wierzchniej warstwie gleby na wzrost roślin w żadnej mieszance. Oznacza to, że skumulowane stężenie Al w roślinie znacznie wzrosło dla mieszanek z dodatkiem FA 60% -80%. Sugeruje to, że nagromadzenie Al, które hamuje wzrost roślin, w tym wzrost korzeni i jego funkcje, w organizmie rośliny hamuje wzrost Acacia Mangium. Dlatego najważniejszym aspektem rekultywacji z zastosowaniem FA do zabezpieczania wierzchniej warstwy gleby nie jest wielkość dodatku FA, lecz ilość Al w FA i akumulacja Al w roślinie.
Rocznik
Strony
13--18
Opis fizyczny
Bibliogr. 24 poz., tab., wykr.
Twórcy
  • Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba, Ibaraki, Japan
  • Department of Earth Resources Engineering, Kyushu University, 744, Motooka, Nishiku, Fukuoka, Japan
  • Department of Earth Resources Engineering, Kyushu University, 744, Motooka, Nishiku, Fukuoka, Japan
  • Department of Earth Resources Engineering, Kyushu University, 744, Motooka, Nishiku, Fukuoka, Japan
  • Department of Earth Resources Engineering, Kyushu University, 744, Motooka, Nishiku, Fukuoka, Japan
Bibliografia
  • 1. ASTM 4318-05 (2005), Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM International, West Conshohocken, PA, 2005.
  • 2. ASTM D422-63(2007)e2 (2007), Standard test method for particle-size analysis of soils (withdrawn 2016). ASTM International, West Conshohocken, PA, 2007.
  • 3. ASTM D5084-10 (2010), Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. ASTM International, West Conshohocken, PA, 2010.
  • 4. ASTM C618-12a (2012), Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM International, West Conshohocken, PA, 2012.
  • 5. ASTM D854-14 (2014), Standard test methods for specific gravity of soil solids by water pycnometer. ASTM International, West Conshohocken, PA, 2014.
  • 6. AMIRA (2002), ARD test handbook: prediction & kinetic control of acid mine drainage. AMIRA P387A. Reported by Ian Wark Research Institute and Environmental Geochemistry International Ltd. AMIRA International, Melbourne, 42 p.
  • 7. BASU, Manisha et al. Potential fly-ash utilization in agriculture: a global review. In Progress in Natural Science, 19 (10), 2009, p. 1173-1186.
  • 8. BINAL, A. The effects of high alkaline fly ash on strength behaviour of a cohesive soil. In Advances in Materials Science and Engineering, 2016. Article ID: 3048716.
  • 9. DINARDO, W. et al. Inhibitory effects of jackbean (Canavalia ensiformis L.) leaf residues on germination and vigour of crops and weeds. In Allelopathy Journal, 5 (1), 1998, p. 35-42.
  • 10. ELUDOYIN, Adebayo et al. Effects of artisanal gold mining activities on soil properties in a part of southwestern Nigeria. In Cogent Environmental Science, 3 (1), 2017, 1305650.
  • 11. GORMAN, James et al. Properties of fly ash used as a topsoil substitute in mineland reclamation. In Proceedings of America Society of Mining and Reclamation, 29 (3), 2000, p. 627-643.
  • 12. HAMANAKA, Akihiro et al. Application of a mixture of fly ash and topsoil for rehabilitation in open-pit coal mines in South East Asian countries. Proceedings of 2nd International Symposium on Land Reclamation and Ecological Restration, Xi’an CHINA, October 2017, p. 233-237.
  • 13. KELLER, Thomas and DEXTER, Anthony, Plastic limits of agricultural soils as functions of soil texture and organic matter content. In Soil Research, 50 (1), 2012, p. 7-17.
  • 14. KORCAK, Ronald, Coal combustion residues as soil amendments: surface coal mining. In CHUGH, Y.P. SAN-GUNETT, B.M. VORIES, K.C. (eds.) Proceedings of Coal Combustion By-Products Associated with Coal Mining Interactive Forum. Southern Illinois University, Carbondale, 1996, p. 143-152.
  • 15. MATSUMOTO, Shinji et al. Application of coal ash to postmine land for prevention of soil erosion in coal mine in Indonesia: utilization of fly ash and bottom ash. In Advances in Materials Science and Engineering, 2016, p. 1-8.
  • 16. MATSUMOTO, Shinji et al. Effects of pH-induced changes in soil physical characteristics on the development of soil water erosion. In Geosciences, 8 (4), 2018, 134.
  • 17. OSAKI, Mitsuru et al. Beneficial effect of aluminum on growth of plants adapted to low pH soils. In Soil Science and Plant Nutrition, 43 (3), 1997, p. 551-563.
  • 18. PAGE, A.L. et al. Physical and chemical properties of flyash from coal-fired power plants with special reference to environmental impacts. In Residue Reviews, 71, 1979, p. 83-120.
  • 19. PANDEY, Vimal et al. Accumulation of heavy metals by chickpea grown in fly ash treated soil: effects on antioxidants. In CLEAN–Soil, Air, Water, 38 (12), 2010, p. 1116-1123.
  • 20. QUADIR, Quazi et al. Ionomic response of Lotus japonicus to different root-zone temperatures. In Soil Science and Plant Nutrition, 57 (2), 2011, p. 221-232.
  • 21. SAIFUDDIN, Mohammed et al. The effects of pre-aluminum treatment on morphology and physiology of potential acidic slope plants. In Kuwait Journal of Science, 43 (2), 2016, p. 199-220.
  • 22. SHENDE, Abha et al. Use of fly ash in reducing heavy metal toxicity to plants. In Resources, Conservation and Recycling, 12 (3-4), 1994, p. 221-228.
  • 23. STASS, Angelika et al. Aluminium rhizotoxicity in maize grown in solutions with Al3+ or Al(OH)4- as predominant solution Al species. In Journal of Experimental Botany, 57 (15), 2006, p. 4033-4042.
  • 24. TRUTER, Wayne et al. The use of class F fly ash in reclaiming the agricultural potential of surface coal mine cover soils. In Proceedings of World of Coal Ash Association, Lexington, KY, April 22-25, 2013.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5d91f86-26c5-4b0b-b98f-e3c018778fe2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.