PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kierunki rozwoju analizy spektrochemicznej w bionieorganicznej analizie śladowej i specjacyjnej – od makro- do mikroanalityki

Autorzy
Identyfikatory
Warianty tytułu
EN
Future prospectives of spectrochemical sample analysis in bioinorganic trace and speciation analysis – from macro to microanalytics
Języki publikacji
PL
Abstrakty
PL
Artykuł przedstawia możliwości wykorzystania nowoczesnych technik instrumentalnych w metalomice/ elementolomice: nowych metod przygotowania próbek do pierwiastkowej analizy śladowej i specjacyjnej oraz zastosowanie metod optycznej spektrometrii emisyjnej i absorpcyjnej do badania specjacji metali i oznaczania całkowitej ilości tych metali w skali makro systemów analitycznych oraz w zminiaturyzowanych systemach analitycznych typu lab-on-a-chip.
EN
The aim of this article is to present an innovative spectroanalytical measurement methodologies based on the use of new and improved hyphenated atomic absorption and emission spectrometric techniques and miniaturized analytical systems with emphasis on macro- to micro interfaces, for the exploitation of total element determination and in the area of metallomics in the context of speciation analysis.
Rocznik
Tom
Strony
12--18
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Wydział Technologii Chemicznej, Politechnika Poznańska
Bibliografia
  • 1. Welz B., Sperling M.: Atomic absorption spectrometry. Wiley, Weinheim 1999.
  • 2. Dědina J., Tsalev D.L.: Hydride generation atomic absorption spectrometry. Wiley, Chichester 1995.
  • 3. Nakahara T.: Hydride Generation Techniques in Atomic Spectroscopy. „Advances in Atomic Spectroscopy”, Elsevier, Amsterdam 1995, vol. 2, 139-178.
  • 4. Sturgeon R.E., Mester Z.: Analytical Applications of Volatile Metal Derivatives. „Appl. Spectrosc.”, 2002, 56, 202A-2013A.
  • 5. He Y., Hou X., Zheng C., Sturgeon R.E.: Critical evaluation of the application of photochemical vapor generation in analytical atomic spectrometry. „Anal. Bioanal. Chem.”, 2007, 388, 769-774.
  • 6. Matusiewicz H., Sturgeon R.E.: Atomic spectrometric detection of hydride forming elements following in situ trapping within a graphite furnace. „Spectrochim. Acta Part B”, 1996, 51, 377-397.
  • 7. Matusiewicz H.: Atom trapping and in situ preconcentration techniques for flame atomic absorption spectrometry. „Spectrochim. Acta Part B”, 1997, 52, 1711-1736.
  • 8. Matusiewicz H., Krawczyk M.: Determination of total antimony and inorganic antimony species by hydride generation in situ trapping flame atomic absorption spectrometry: a new way to (ultra)trace speciation analysis. „J. Anal. At. Spectrom.”, 2008, 23, 43-53.
  • 9. Welz B., Mores S., Carasek E. et al.: High-Resolution Continuum Source Atomic and Molecular Absorption Spectrometry – A Review. „Appl. Spectrosc. Rev.”, 2010, 45, 327-354.
  • 10. Welz B., Becker-Ross H., Florek S. et al.: High-Resolution Continuum-source Atomic Absorption Spectrometry – What Can We Expect? „J. Braz. Chem. Soc.”, 2003, 14, 220-229.
  • 11. Matusiewicz H., Krawczyk M.: Sequential multi-element determination of hydride-forming elements (As, Bi, Cd, In, Pb, Se, Te, Tl) by high-resolution continuum source atom trapping-flame atomic absorption spectrometry. „Chem. Anal.”, Warszawa, 2009, 54, 949-973.
  • 12. Krawczyk M., Matusiewicz H.: Determination of gold by high-resolution continuum source atomic absorption spectrometry with chemical vapor generation. „J. Braz. Chem. Soc.”, 2013, 24, 749-757.
  • 13. Matusiewicz H.: Chemical Vapor Generation with Slurry Sampling: A Review of Atomic Absorption Applications. „Appl. Spectrosc. Rev.”, 2003, 38, 263-294.
  • 14. Matusiewicz H., Sturgeon R.E.: Chemical vapor generation with slurry sampling: A review of applications to atomic and mass spectrometry. „Appl. Spectrosc. Rev.”, 2012, 47, 41-82.
  • 15. Matusiewicz H.: Wet digestion methods. [In:] Sample preparation for trace element analysis. Elsevier, 2003, 6, 193-233.
  • 16. Matusiewicz H.: Mineralization techniques used in the sample preparation step. [In:] Analytical measurements in aquatic environments. CRC Press, 2008, 5, 95-102.
  • 17. He Y., Tang L., Wu X. et al.: Spectroscopy: The Best Way Toward Green Analytical Chemistry? „Appl. Spectrosc. Rev.”, 2007, 42, 119-138.
  • 18. Keith L.H., Gron L.U., J.L. Young J.L.: Green Analytical Methodologies. „Chem. Rev.”, 2007, 107, 2695-2708.
  • 19. Pohl P., Jamroz P.: Recent achievements in chemical hydride generation inductively coupled and microwave induced plasmas with optical emission spectrometry detection. „J. Anal. At. Spectrom.”, 2011, 26, 1317-1337.
  • 20. Matusiewicz H., Ślachciński M.: Method development for simultaneous multi-element determination of hydride forming elements (As, Bi, Ge, Sb, Se, Sn) and Hg by microwave induced plasma-optical emission spectrometry using integrated continuous-microflow ultrasonic nebulizer-hydride generator sample introduction system. „Microchem. J.”, 2010, 95, 213-221.
  • 21. Matusiewicz H., Ślachciński M.: In situ vapor generation inductively coupled plasma spectrometry for determination of iodine using a triple-mode micro flow ultrasonic nebulizer after alkaline solubilization. „Anal. Methods”, 2010, 2, 1592-1598.
  • 22. Bakirdere S., Aydin F., Bakirdere E.G.: From mg/kg to pg/kg Levels: A Story of Trace Element Determination: A Review. „Appl. Spectrosc. Rev.”, 2011, 46, 38-66.
  • 23. Rios A., Escarpa A., M.C. Gonzalez M.C. et al.: Challenges of analytical microsystems. „Trends Anal. Chem.”, 2006, 25, 467-483.
  • 24. Aurous P-A., Iossifidis D., Reyes D.R. et al.: Micro Total Analysis Systems. 2. Analytical Standard Operations and Applications. „Anal. Chem.”, 2002, 74, 2637-2652.
  • 25. Dittrich P.S., Tachikawa K., Manz A.: Micro Total Analysis Systems. Latest Advancements and Trends. „Anal. Chem.”, 2006, 78, 3887-4011.
  • 26. Matusiewicz H., Ślachciński M.: Interfacing a microchip-based capillary electrophoresis system with a microwave induced plasma spectrometry for copper speciation. „Cent. Eur. J. Chem.”, 2011, 9, 896-903.
  • 27. Matusiewicz H., Ślachciński M.: Development of a new hybrid technique for inorganic arsenic speciation analysis by microchip capillary electrophoresis coupled with hydride generation microwave induced plasma spectrometry. „Microchem. J.”, 2012, 102, 61-67.
  • 28. Matusiewicz H., Ślachciński M.: Development of interface for online coupling of micro-fluidic chip-based photo-micro-reactor/ultrasonic nebulization with microwave induced plasma spectrometry and its application in simultaneous determination of inorganic trace elements in biological materials. „Microchem. J.”, 2015, 119, 133-139.
  • 29. Matusiewicz H.: A novel sample introduction system for microwave-induced plasma optical emission spectrometry. „Spectrochim. Acta”, part B, 2002, 57, 485-494.
  • 30. Matusiewicz H.: Thermal vaporization for inductively coupled plasma optical emission spectrometry. A Review. „J. Anal. At. Spectrom.”, 1986, 1, 171-184.
  • 31. Matusiewicz H.: Thermal vaporization for sample introduction in microwave induced plasma analytical emission spectrometry. A Review. „Spectrochim. Acta Rev.”, 1990, 13, 47-68.
  • 32. Matusiewicz H., Kopras M.: Simultaneous determination of hydride forming elements (As, Bi, Ge, Sb, Se) and Hg in biological and environmental reference materials by electrothermal vaporization-microwave induced plasma-optical emission spectrometry with their in situ trapping in a graphite furnace. „J. Anal. At. Spectrom.”, 2003, 18, 1415-1425.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5d6b8ae-8a3c-4536-a5a4-24438efacba8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.