PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of direct source parameter imaging (direct local wave number) technique to the 2D gravity anomalies for depth determination of some geological structures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Analytic signal (AS) is a complex quantity defined by two components, amplitude and phase. The intensity of changes in the phase component of the analytic signal is equal to the local wavenumber, which is used to interpret gravity data from the contact, thin dyke, and horizontal cylinder models. However, one of the disadvantages of this method is its sensitivity to noise. This paper introduces an improved local wavenumber (DSPI) based on a direct analytic signal (DAS) that is more accurate in determining the depth of potential features on gravity anomalies. This method was first tried to determine the depth values of noisy and noiseless 2D synthetic model structures. After theoretical approval, the method was examined on two gravity field data from Iran (the Gol-e-Gohar iron ore mine, Kerman) and Canada (Mobrun orebody, near Noranda). The results obtained from the DSPI method have an excellent agreement with the drilling information, Radial amplitude spectrum, and the Euler deconvolution method.
Czasopismo
Rocznik
Strony
659--667
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
  • Hamedan Province Branch, University of Applied Science and Technology (UAST), Hamedan, Iran
  • Department of Geophysical Engineering, Istanbul University - Cerrahpasa, Istanbul, Turkey
autor
  • Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
Bibliografia
  • 1. Aghajani H, Moradzadeh A, Hualin Z (2009) Normalized full gradient of gravity anomaly method and its application to the Mobrun Sulfide Body, Canada. World Appl Sci J 6(3):393–400
  • 2. Babaki A, Aftabi AJ (2006) Investigation on the model of iron mineralization at Gol Gohar iron deposit, Sirjan-Kerman. Geosci Sci Q J 61:40–59
  • 3. Behnam S, Ramazi H (2019) Interpretation of geomagnetic data using power spectrum and 3D modeling of Gol-e-Gohar magnetic anomaly. J Appl Geophys 171:13. https://doi.org/10.1016/j.jappgeo.2019.103829
  • 4. Essa KS (2011) A fast interpretation method for inverse modeling of residual gravity anomalies caused by simple geometry. J Geol Res 2012:1–11
  • 5. Grant FS, West GF (1965) Interpretation theory in applied geophysics. McGraw-Hill Book
  • 6. Hosseini ST, Asghari O, Emery X (2021) An enhanced direct sampling (DS) approach to model the geological domain with locally varying proportions: Application to Golgohar iron ore mine. Iran. Ore Geology Reviews 139:104452
  • 7. Hsu SK, Sibuet JC, Shyu CT (1996) High-resolution detection of geologic boundaries from potential-field anomalies: An enhanced analytic signal technique. Geophysics 61:373–386
  • 8. Hsu SK, Coppens D, Shyu CT (1998) Depth to magnetic source using the generalized analytic signal. Geophysics 63:1947–1957
  • 9. Keating P (2009) Improved use of the local wavenumber in potential-field interpretation. Geophysics 74:L75–L85
  • 10. Luo Y, Wang M, Luo F, Tian S (2011) Direct analytic signal interpretation of potential field data using 2-D Hilbert transform. Chin J Geophy 54(4):551–559
  • 11. Ma G (2013) Improved local wavenumber methods in the interpretation of potential field data. Pure Appl Geophysics 170:633–643
  • 12. Ma G, Du X (2012) An improved analytic signal technique for the depth and structural index from 2D magnetic anomaly data. Pure Appl Geophys 169:2193–2200
  • 13. Ma G, Li L (2013) Depth and structural index estimation of 2D magnetic source using correlation coefficient of analytic signal. J Appl Geophys 91:9–13
  • 14. Mahmoudi S, Mahmoudi A, Mehrabi B (2017) Microstructure and geochemical evidences for genesis of the Gol-e-Gohar iron deposit. Iran J Econ Geol 9(2):463–481 (in Persian)
  • 15. Nabighian MN (1972) The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation. Geophysics 37:507–517
  • 16. Nabighian MN, Grauch VJS, Hansen RO, Lafehr TR, Li Y, Peirce JW, Phillips JD, Ruder ME (2005) The historical development of the magnetic method in exploration. Geophysics 70(6):33ND-61ND
  • 17. Oksum E, Dolmaz MN, Pham LT (2019) Inverting gravity anomalies over the Burdur sedimentary basin. SW Turkey. Acta Geod Geophys 54(4):445–460
  • 18. Pham LT, Oksum E, Do TD (2018) GCH_gravinv: A MATLAB-based program for inverting gravity anomalies over sedimentary basins. Comput Geosci 120:40–47
  • 19. Pham LT, Do TD, Oksum E, Le ST (2019) Estimation of curie point depths in the southern Vietnam continental shelf using magnetic data. Vietnam J Earth Sci 41(3):216–228
  • 20. Pham LT, Oksum E, Dolmaz MN (2021) GRV_D_inv: a graphical user interface for 3D forward and inverse modeling of gravity data. Geofiz Zhurnal 43(1):181–193
  • 21. Pilkington M, Keating P (2006) The relationship between local wavenumber and analytic signal in magnetic interpretation. Geophysics 71(1):L1–L3
  • 22. Roest WRJ, Verhoef J, Pilkington M (1992) Magnetic interpretation using the 3-D analytic signal. Geophysics 57(1):116–125
  • 23. Roshan R, Singh UK (2016) Interpretation of gravity anomalies of Idealised bodies using Global Particle Swarm Optimization Technique. In: International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 2174–2179. https://doi.org/10.1109/ICEEOT.2016.7755077
  • 24. Roy L, Agarwal BNP, Shaw RK (2000) A new concept in Euler Deconvolution of isolated gravity anomalies. Geophys Prospect 48(3):559–575
  • 25. Salem A (2005) Interpretation of magnetic data using analytic signal derivatives. Geophys Prospect 53:75–82
  • 26. Shahba S, Arjmandi R, Monavari M, Ghodusi J (2017) Application of multi-attribute decision-making methods in SWOT analysis of mine waste management (case study: Sirjan’s Golgohar iron mine, Iran). Resour Policy 51:67–76
  • 27. Smith RS, Salem A (2005) Imaging the depth, structure and susceptibility from magnetic data: the advanced source parameter imaging method. Geophysics 70:L31–L38
  • 28. Smith RS, Thurston JB, Dai TF, MacLeod IN (1998) ISPI; The improved source parameter imaging method. Geophys Prospect 46(2):141–151
  • 29. Thurston JB, Smith RS (1997) Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPI™ method. Geophysics 62:807–813
  • 30. Toktay HD, Alvandi A (2021) Application of the analytic signal amplitude and the Bott-Smith formula as a simple and very fast depth determination method of gravity anomalies: application on synthetic and field profile data. J Indian Geophys Union 25:9–19
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5d586b8-23f9-46cf-b974-16874ab4be91
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.