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Abstract. The nonlinear vibrations of a slender system subjected to Euler’s load which  

is partially tensioned is discussed in this paper. The longitudinal displacement and rotation 

on both of the system ends are limited by the discrete elements in the form of translational 

and rotational springs. The results of numerical simulations concern the first vibration  

frequency (linear and non-linear components) in relation to the location and magnitude  

of external load application and different rotational spring stiffness. This nonlinear system 

is based on the screw drive used in the newly designed vertical platform lifts. 
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1. Introduction 

Geometrically nonlinear systems (columns, beams) are the subjects of many 

studies [1-3] in which the nonlinear theory and the theory of Bernoulli-Euler are 

used to formulate the boundary problem. This theory is sufficient when slender 

systems are considered and when the system is combined with translational and  

rotational inertia of mass elements. The second possibility is to apply the theory  

of beams proposed by Timoshenko, which takes into account the shear energy and 

the rotational inertia energy of the cross section [4-6]. One of the more interesting 

non-linear structures is the partially tensioned column which was presented in works  

[7-11]. The publications show the crucial influence of discrete elements on the vibra- 

tion frequency [2, 9] and stability [8] (the natural vibration frequency and critical 

force of the system can be controlled). The main scope of the study in [11] was to 

investigate the influence of the rotational stiffness of the support on the linear com- 

ponent of vibration frequency which does not depend on amplitude. The results of 

this study showed that the great impact of rotational stiffness on the linear compo-
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nent of vibrations at different locations of external load application and magnitude. 

With the increase in the rotational stiffness of the fastening points the vibration 

frequency of the system grows. Greater external load magnitude results in a more 

dynamic response of the investigated parameter. A significant influence of the am-

plitude on the natural vibration frequency was presented in [10], where the consid-

ered system was a partially tensioned rod rigidly fixed at both ends. 

In this paper the influence of parameters such as translational and rotational 

stiffness of used springs and the external load magnitude for a variable location on 

the vibration frequency (nonlinear component) is presented. The column in ques-

tion corresponds to a screw drive system, which is used in vertical lift platforms 

(equipped with an engine room located in the lower part of the frame). 

2. Boundary problem 

An external force P is applied between the ends of the slender structure shown in 

Figure 1. Euler’s load subjected in point O does not change the line of action during 

the system deflection. The point of force application (described with parameter ) 

can be changed along the entire length of the rod as when the screw-drive lift  

platform transports different loads at various lifting heights. In order to formulate  

a mathematical model, the overall length of the system is divided into two parts,  

respectively of lengths l1 and l2 (the compressed lower part is indicated by index 1, 

and the tensioned upper part by index 2). The considered structure is characterized 

(over the whole length) by constant bending stiffness ((EJ)1 = (EJ)2 = (EJ)), longi-

tudinal stiffness ((EA)1 = (EA)2 = (EA)) and mass per length unit ((A)1 = (A)2 = 

= (A)) (where: Ei - Young’s modulus, i - density, Ai - cross-section area, Ji - geo- 

metrical axial moment of inertia of the cross-section of i-th element of the structure). 

The longitudinal displacement and rotation on both of the system ends are limited 

by the discrete elements in the form of translational (K0, K1) and rotational (C0, C1) 

springs. 

The differential equations of motion and natural boundary conditions of the 

considered structure have been formulated on the basis of Hamilton’s principle  

and the Bernoulli-Euler theory. The differential equations of motion in transversal 

and longitudinal directions of the system are as follows:  
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Fig. 1. Physical model of considered column 

Equations (1) and (2) are written in the non-dimensional form using the follow-

ing relations: 
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where: Si() - internal force in i-th element of the structure,  - vibration frequency, 

Wi(xi,), Ui(xi,) - transversal and longitudinal displacements. 

The geometrical and natural boundary conditions are presented below: 
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The nonlinear elements of the differential equations and boundary conditions 

are expanded into a power series of the small parameter of an amplitude. The small 

parameter method is used because of nonlinearities of the solution of the boundary 

problem of free vibration. This investigation focuses only on the rectilinear form  

of static equilibrium at which the series is as follows: 
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Solutions of equations (1), taking into account a power series of the small  

parameter, are substituted with the boundary conditions associated with transverse 

deflection, resulting in a system of equations. The determinant of this system equal- 

ized to zero is a transcendental equation on the linear component of the natural  

vibration frequency 0. The nonlinear component of the natural vibration frequency 

2 is calculated by the following formula: 
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where: 
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 
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1

1i iw   are solutions for differential equations associated with a small parameter in 

zero power. These solutions were obtained on the basis of a normalization condition. 

3. Results of numerical simulations 

Results of numerical simulations of free vibrations (including linear 0 and 

nonlinear 2 components of free vibrations frequency) of the considered partially 

tensioned slender system were presented in non-dimensional form, defined as:  
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The amplitude of vibrations in numerical calculations is assumed as a double 

radius of gyration. In Figure 2 the relationship between the  parameter (difference 

between the nonlinear and linear free vibration frequency) and the  parameter  

(location of Euler’s load application) in combination for different rotational spring 

stiffness is plotted. In simulations it has been assumed that external load magnitude 

 = 10, translational stiffness is k0 = k1 = 1000 (Fig. 2a), k0 = k1 = 2000000 (Fig. 2b) 

and rotational stiffness c0 = c1. The influence of the rotational spring stiffness on 

dynamic behavior was analyzed. On the basis of the obtained results, it can be  

concluded that the rotational stiffness has great influence on the magnitude of the 

nonlinear component vibration frequency. With an increase in the rotational stiff-

ness of the fastening points, the share of the nonlinear component of the vibration 
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frequency decreases. Conversely, in the case of increased translational stiffness 

(Fig. 2b), much higher values of the  parameter are obtained. The difference  

between the nonlinear and linear free vibration frequency changes in relation to  

the location of the external force  at a given rotational stiffness.  

 

 

Fig. 2a-b. The difference between the nonlinear and linear components of vibration 

frequency  in relation to the point of external load application  at different rotational 

spring stiffness and taking into account parameters λ = 10, c0 = c1, k0 = k1 

 

Fig. 3a-b. The difference between the nonlinear and linear components of vibration 

frequency  in relation to the point of external load application  at different rotational 

spring stiffness and taking into account parameters λ = 30, c0 = c1, k0 = k1 

For a higher magnitude of the external load λ = 30, greater changes of the  

parameter were obtained, which depended on the point of load application, as shown 
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in Figure 3. It can also be observed that the values of the parameter of the difference 

between the linear and the nonlinear free vibration frequency are greater when the 

point of external load application is  = 0.25 and when it is located near the upper 

mounting of the column. The obtained results will contribute to the correct selec-

tion of rigidity of the mounting screw drive of the vertical platform lift to avoid  

the frequency of resonance vibrations. The elevator is designed for disabled people 

and the safety of use is very important, making it difficult to change the magnitude 

of external load (λ) and the lifting height (l). 

4. Conclusions 

The boundary problem of free vibrations of a partially tensioned system sub-

jected to Euler’s load was considered in this paper. The influence of the rotational 

spring stiffness on dynamic behavior was analyzed. The discussion includes both  

a linear component of the first vibration frequency as well as its nonlinear compo-

nent, the magnitude of which depends on the amplitude of vibration. When there is 

an increase in the rotational stiffness of the fastening points, the vibration frequency 

of the system increases, while the share of the nonlinear component of the vibration 

frequency decreases. In contrast, in the case of increasing translational stiffness  

of the mountings, the nonlinear component of the vibration frequency increases. 

On the basis of the obtained results, it can be concluded that the vibration frequency 

of the considered slender system can be controlled by the stiffness of the used rota-

tional (C0, C1) and translational (K0, K1) springs and magnitude of the external load. 
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