PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of some parameters on the thermohydraulic characteristics of a channel heat exchanger with corrugated walls

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work is a numerical modeling of the flow of a viscous fluid provided with convective heat transfer in a rectangular channel. We focus on the influence of the shape of corrugations which are present on the channel walls. Three shapes of corrugations are studied and which are: the rectangular, triangular and semi-circular shape. Also, effects of the height and number of corrugations on the fluid dynamics and thermal characteristics of the exchanger are highlighted. The working fluid is non-Newtonian (having a shear thinning behavior modeled by the Otswald law). The obtained results reveal that the presence of corrugations yields a major change in the heat exchange execution. In terms of superiority of heat transfer ratio, the cases under investigation can be classified as follows: rectangular > triangular > semi-circular. However and in terms of low pressure drop, this ranking is reversed. Furthermore, the triangular and semicircular shapes were found to have almost similar effects.
Rocznik
Strony
53--60
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
autor
  • Department of Technology, Institute of Science and Technology, University Center of Naama (Ctr Univ Naama), Po. Box 66, 45000, Algeria
autor
  • Department of Technical Sciences, University Amar Thilidji of Laghouat, Algeria
Bibliografia
  • 1. Sahel D., Ameur H., Benzeguir R., Kamla Y. (2016). Enhancement of heat transfer in a rectangular channel with perforated baffles. Applied Thermal Engineering, Vol. 101, pp. 156-164.
  • 2. Boukhadia K., Ameur H., Sahel D., Bozit M. (2018). Effect of the perforation design on the fluid flow and heat transfer characteristics of a plate fin heat exchanger. International Journal of Thermal Sciences, Vol. 126, pp. 172-180.
  • 3. Mellal M., Benzeguir R., Sahel D., Ameur H. (2017). Hydro-thermal shell-side performance evaluation of a shell and tube heat exchanger under different baffle arrangement and orientation. International Journal of Thermal Sciences, Vol. 121, pp. 138-149.
  • 4. Medjahed D. M., Ameur H., Ariss A., Medjadji N., Mahammedi A. (2016). Heat transfer improvement in micro-channel heat sinks by modifying some design and operating conditions. International Review of Mechanical Engineering, Vol. 10, pp. 395-404.
  • 5. Lin L., Zhao J., Lu G., Wang X.D., Yan W.M. (2017). Heat transfer enhancement in microchannel heat sink by changing wavelength/amplitude. International Journal of Thermal Sciences, Vol. 118, pp. 423-434.
  • 6. Alem K., Sahel D., Nemdili A., Ameur H. (2018). CFD investigations of thermal and dynamic behaviors in a tubular heat exchanger with butterfly baffles. Frontiers in Heat and Mass Transfer (FHMT), Vol. 10, pp. 27.
  • 7. Lin J.H., Huang C.Y., Su C.C. (2007). Dimensional analysis for the heat transfer characteristics in the corrugated channels of plate heat exchangers. International Communications in Heat and Mass Transfer, Vol. 34, pp. 304-312.
  • 8. Dong J.Q., Su L., Chen Q., Xu W.W. (2013). Experimental study on thermal–hydraulic performance of a wavy fin-and-flat tube aluminum heat exchanger. Applied Thermal Engineering, Vol. 51, pp. 32-39.
  • 9. Ni M.L., Chen Y.P., Dong C., Wu. J.F. (2014). Numerical simulation of heat transfer and flow of cooling air in triangular wavy fin channels. Journal of Central South University of Technology, Vol. 21, pp. 2759-2765.
  • 10. Rush T.A., Newell T.A., Jacobi A.M. (1999). An experimental study of flow and heat transfer in sinusoidal wavy passages. International Journal of Heat and Mass Transfer, Vol. 42, pp. 1541-1553.
  • 11. Bahaidarah H.M., Anand N., Chen H. (2005). Numerical study of heat and momentum transfer in channels with wavy walls. Numerical Heat Transfer, Part A, Vol. 47, pp. 417-439.
  • 12. Tokgoz N., Aksoy M.M., Sahin B. (2017). Investigation of flow characteristics and heat transfer enhancement of corrugated ducts geometries. Applied Thermal Engineering, Vol. 118, pp. 518-530.
  • 13. Wang C.C., Chen C.K. (2002). Forced convection in a wavy-wall channel. International Journal of Heat and Mass Transfer, Vol. 45, pp. 2587-2595.
  • 14. Blomerius H., Mitra N.K. (2000). Numerical investigation of convective heat transfer and pressure drop in wavy ducts. Numerical Heat Transfer, Part A, Vol. 37, pp. 37-54.
  • 15. Ali A.H.H., Hanaoka Y. (2002). Experimental study on laminar flow forced-convection in a channel with upper V-corrugated plate heated by radiation. International Journal of Heat and Mass Transfer, Vol. 45, pp. 2107-2117.
  • 16. Mohammed H., Abed A.M., Wahid M. (2013). The effects of geometrical parameters of a corrugated channel with in out-of-phase arrangement. International Communications in Heat and Mass Transfer, Vol. 40, pp. 47-57.
  • 17. Taymaz I., Koc I., Islamoglu Y. (2008). Experimental study on forced convection heat transfer characteristics in a converging diverging heat exchanger channel. Heat and Mass Transfer, Vol. 44, pp. 1257-1262.
  • 18. Ma T., Du L.X., Sun N., Zeng M., Sunden B., Wang Q.W. (2016). Experimental and numerical study on heat transfer and pressure drop performance of Cross-Wavy primary surface channel. Energy Conversion and Management, Vol. 125, pp. 80-90.
  • 19. Wang L., Deng L., Ji C., Liang E., Wang C., Che D. (2016). Multi-objective optimization of geometrical parameters of corrugated-undulated heat transfer surfaces. Applied Energy, Vol. 174, pp. 25-36.
  • 20. Bilen K., Cetin M., Gul H., Balta T. (2009). The investigation of groove geometry effect on heat transfer for internally grooved tubes. Applied Thermal Engineering, Vol. 29, pp. 753-761.
  • 21. Jialing Z., Yupei W., Wei Z. Xueling L. (2014). Numerical study on heat transfer enhancement for use of corrugated, nodal and horizontal grain tubes. Transactions of Tianjin University, 2014, 20: 385-392.
  • 22. Elshafei E.A.M., Awad M.M., El-Negiry E., Ali A.G. (2010). Heat transfer and pressure drop in corrugated channels. Energy, Vol. 35, pp. 101-110.
  • 23. Gao X.M., Li W.Y. Wang J.S. (2014). Heat transfer and flow characteristics in a channel with one corrugated wall. Science China Technological Sciences, Vol. 57, pp. 2177-2189.
  • 24. Zhang L., Che D. (2011). Influence of corrugation profile on the thermal-hydraulic performance of cross-corrugated plates. Numerical Heat Transfer, Part A, Vol. 59, pp. 267-296.
  • 25. Akbarzadeh M., Rashidi S., Esfahani J.A. (2017). Influences of corrugation profiles on entropy generation, heat transfer, pressure drop and performance in a wavy channel. Applied Thermal Engineering, Vol. 116, 278-291.
  • 26. Islamoglu Y. (2008). Effect of rounding of protruding edge on convection heat transfer in a converging diverging channel. International Communications in Heat and Mass Transfer, Vol. 35, pp. 643-647.
  • 27. Kays W.M., London A.L. (1998). Compact heat exchangers. 3rd ed., Krieger Publ. Co., Melbourne, Florida.
  • 28. Hesselgraves J.E. (2001). Compact heat exchangers: selection, design and operation, 1st ed., Pergammon, New York.
  • 29. Kanaris A.G., Mouza A.A., Paras S.V. (2006). Flow and heat transfer prediction in a corrugated plate heat exchanger using a CFD code. Chemical Engineering and Technology, Vol. 29, pp. 923-930.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5d0fb2a-18da-40b8-8b97-98f2d3e476c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.