Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
A sulfidization roasting-flotation process was usually viewed to be effective in treating the refractory oxide ore. In this paper, pyrite was proposed to be applied as a potential vulcanizing reagent to transform PbO or its surface to PbS based on feasibilities of technology and economy. The evolution process, phase and characteristics of crystal growth were investigated by TG, XRD and SEM-EDS, respectively, to interpret the interaction mechanism of lead oxide and pyrite at high temperature. It was found that the decomposition process of pyrite under argon atmosphere was a slow process of sulfur released from FeS2 to FexS, which made the process easier to be controlled. When PbO was introduced into the system, the initial solid-solid (PbO-FeS2) reaction and prevailing solid-gas (PbO-S2(g)) reaction occurred at about 500 °C and 700 °C, respectively. Combined with the SEM-EDS analyses results, the optimal temperature for the sulfidization of PbO should be in the range of 700-750 °C.
Słowa kluczowe
Rocznik
Tom
Strony
270--277
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Kunming University of Science and Technology, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093, China
- Kunming University of Science and Technology, Faculty of Metallurgical and Energy Engineering, Kunming 650093, China
autor
- Kunming University of Science and Technology, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093, China
- Kunming University of Science and Technology, Faculty of Land Resource Engineering, Kunming 650093, China
autor
- Kunming University of Science and Technology, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093, China
- Kunming University of Science and Technology, Faculty of Metallurgical and Energy Engineering, Kunming 650093, China
autor
- Kunming University of Science and Technology, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093, China
autor
- Kunming University of Science and Technology, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093, China
Bibliografia
- DAI J., YANG X., HAMON M., KONG L., 2015. Particle size controlled synthesis of CdS nanoparticles on a microfluidic chip. Chemical Engineering Journal, 280(5), 385-390.
- EJTEMAEI M., GHARABAGHI M., IRANNAJAD M., 2014. A review of zinc oxide mineral beneficiation using flotation method. Advances in Colloid and Interface Science, 206(2), 68-78.
- GOLSHEIKH A M., HUANG N M., LIM H N., CHIA C H., HARRISON I., MUHAMAD M R., 2013. One-pot hydrothermal synthesis and characterization of FeS2 (pyrite)/graphene nanocomposite. Journal of Chemical engineering, 218(3), 276-284.
- HAN J W., LIU W., WANG D W., JIAO F., QIN W Q., 2016a. Selective sulfidation of lead smelter salg with sulfur. Metallurgical and Materials Transactions B, 47(1), 344-354.
- HAN J W., LIU W., WANG D W., JIAO F., ZHANG T F., QIN W Q., 2016b. Selective Sulfidation of Lead Smelter Slag with Pyrite and Flotation Behavior of Synthetic ZnS. Metallurgical and Materials Transactions B, 47, 2400-2410.
- HAN J W., LIU W., ZHANG T F., XUE K., LI W H., JIAO F., QIN W Q., 2017a. Mechanism study on the sulfidation of ZnO with sulfur and iron oxide at high temperature. Scientific Reports 7, 42536.
- HAN J W., LIU W., QIN W Q., ZHANG T F., CHANG Z Y., XUE K., 2017b. Effects of sodium salts on the sulfidation of lead smelting slag. Minerals Engineering, 108, 1-11.
- HU G., DAM-JOHANSEN-DAM., WEDEL S., HANSEN J P., 2006. Decomposition and oxidation of pyrite. Progress in Energy and Combustion Science, 32(2), 295-314.
- LAN Z Y., LI D., LIU Q., TONG X., 2013. Study on Flotation of Lead-zinc Oxide Ore from Yunnan. Environmental Protection and Resources Exploitation, 1(3), 2317-2322.
- LIU W., WEI D Z., MI J., SHEN Y., CUI B., HAN C., 2015. Immobilization of Cu(II) and Zn(II) in simulated polluted soil using sulfurizing agent. Chemical Engineering Journal, 277(2), 312-317.
- LI C X., WEI C., SONG Y., DENG Z G., LIAO J Q., XU H S., LI M T., LI X B., 2012. Hydrothermal sulfidation of white lead with elemental sulfur. Advanve in chemical engineering, 624-630.
- LIANG Y J., CHAI L Y., LIU H., MIN X B., MAHMOOD Q., ZHANG H J., KE Y., 2012. Hydrothermal sulfidation of zinc-containing neutralization sludge for zinc recovery and stabilization. Mineral Engineering, 25(5), 14-19.
- LI H Y., ZHANG S H., 2005. Detection of mineralogical changes in pyrite using measurements of temperature-dependence susceptibilities. Journal of geophys, 48(5), 1384-1391.
- LI Y., WANG J K., WEI C., LIU C X., JIANG J B., WANG F., 2010. Sulfidation roasting of low grade lead-zinc oxide ore with elemental sulfur. Mineral Engineering, 23, 563-566.
- LV W., YU D., WU J., ZHANG L., XU M., 2015. The chemical role of CO2 in pyrite thermal decomposition. Proceedings of the Combustion Institute, 35 (2), 3637-3644.
- LV J F., ZHANG H P., TONG X., FAN C L., YANG W T., ZHENG Y X., 2017. Innovative methodology for recovering titanium and chromium from a raw ilmenite concentrate by magnetic separation after modifying magnetic properties. Journal of Hazardous Materials, 325, 251-260.
- MEHDILO M., IRANNAJAD M., ZAREI H., 2013. Flotation of zinc ore using cationic and cationic-anionic mixed collectors. Physicochemical Problems of Mineral Processing, 49 (2), 145-156.
- PARK J., PARK S., CHOI J., KIM G., TONG M P., KIM H., 2016. Influence of excess sulfide ions on the malachite-bubble interaction in the presence of thiol-collector. Separation and purification technology, 168(2), 1-7.
- PENG R Q., REN H J., ZHANG X., 2003. Metallurgy of lead and zinc. Beijing: Science Press.
- SUN W., SUN C., LIU R Q., CAO X F., TAO H B., 2016. Electrochemical behavior of galena and jamesonite flotation in high alkaline pulp. Transactions of Nonferrous Metals Society of China, 26(1), 551-556.
- TAN Q Y., LI J H., 2015. Recycling Metals from Wastes: A Novel Application of Mechanochemistry. Environment Science Technology, 49(2), 5849-5861.
- XIAO S., LI X., SUN W., GUAN B., WANG Y., 2016. General and facile synthesis of metal sulfide nanostructures: In situ microwave synthesis and application as binder-free cathode for Li-ion batteries. Chemical Engineering, 306(2), 251-259.
- YUAN W Y., LI J H., ZHANG Q W., SAITO F., 2012. Mechanochemical sulfidization of lead oxides by grinding with sulfur. Powder Technology, 230(1), 63-66.
- ZHENG Y X., LIU W., QIN W Q., KONG Y., LUO H L., HAN J W., 2014. Mineralogical Reconstruction of Lead Smelter Slag for Zinc Recovery. Separation science and technology, 49(5), 783-791.
- ZHENG Y X., LV J F., LIU W., QIN W Q., WEN S M., 2016. An inonovative technology for recovery of zinc, lead and silver from zinc leaching residue. Physicochemical Problems of Mineral Processing, 52(2): 943-954.
- ZHENG Y X., LIU W., QIN W Q., HAN J W., YANG K., LUO H L., WANG D W., 2015a. Improvement for sulphidation roasting and its application to treat lead smelter slag and zinc recovery. Canadian Metallurgical Quarterly, 54 (1), 92-100.
- ZHENG Y X., LIU W., QIN W Q., JIAO F., HAN J W., YANG K., LUO H L., 2015b. Sulfidation roasting of lead and zinc carbonate with sulphur by temperature gradient method. Journal of Central South University, 22(5), 1635-1642.
- ZHENG Y X., LIU W., QIN W Q., HAN J W., YANG K., LUO H L., 2015c. Selective reduction of PbSO4 to PbS with carbon and flotation treatment of synthetic galena. Physicochemical Problems of Mineral Processing, 51(2), 51.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5cc3c18-be05-4528-95a0-149f9f58c797