Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The distribution of maximum rainfall level is not a homogeneous phenomenon and is often characterised by multimodality and often the phenomenon of the heavy right-hand tail. Modelling this phenomenon using classic probability distributions leads to ignoring multimodality, thus underestimating or overestimating the predicted values in the tail tails – the most important from the point of view of safe dimensioning of drainage systems. To avoid the difficulties mentioned above, a non-parametric kernel estimator method of maximum precipitation density function was used (in the example of rainfall data from a selected station in Poland). The methodology proposed in the paper (for use on any rainfall data from other meteorological stations) will allow the development of more reliable local models of maximum precipitation.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
260--275
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- Department of Mathematics, Faculty of Environmental Engineering and Geodesy, Wroclaw University of Environmental and Life Sciences, Poland
autor
- Department of Water Supply and Sewerage Systems, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Poland
autor
- Department of Mathematics, Faculty of Environmental Engineering and Geodesy, Wroclaw University of Environmental and Life Sciences, Poland
autor
- Department of Mathematics, Faculty of Environmental Engineering and Geodesy, Wroclaw University of Environmental and Life Sciences, Poland
Bibliografia
- Ahmed, S., Tsanis, I. (2016). Climate Change Impact on Design Storm and Performance of Urban Storm-Water Management System – A Case Study on West Central Mountain Drainage Area in Canada. Hydrol. Current Res., 7(1), 1-11. DOI: 10. 4172/2157-7587.1000229
- Ben-Zvi, A. (2009). Rainfall intensity-duration-frequency relationships derived from large partial duration series. J. Hydrol., 367(1-2), 104-114. DOI: 10.1016/j.jhydrol.2009. 01.007
- Dai, A. (2011). Drought under global warming: a review. WIREs Clim. Change, 2(1), 45-65. DOI: 10.1002/wcc.81, 2011.
- EN 752: Drain And Sewer Systems Outside Buildings – Sewer System Management, Comité européen de normalisation, 2017.
- Fleig, A.K., Tallaksen, L.M., James, P., Hisdal, H., Stahl, K. (2015). Attribution of European precipitation and temperature trends to changes in synoptic circulation. Hydrol. Earth Syst. Sci., 19, 3093-3107. DOI: 10.5194/hess-19-3093-2015
- Göçken, M., Özçalıcı, M., Boru, A., & Dosdoğru, A.T. (2016). Integrating metaheuristics and Artificial Neural Networks for improved stock price prediction. Expert Systems with Applications, 44, 320-331. DOI: 10.1016/j.eswa.2015.09.029
- Gupta, R., Kundu, D. (2007). Generalised exponential distribution: existing results and some recent developments. J. Stat. Plan. Inference, 137, 3537-3547. DOI: 10.1016/ j.jspi.2007.03.030
- Hermida, L., Sánchez, J.L., López, L., Berthet, C., Dessens, J., García-Ortega, E., Merino, A. (2013). Climatic trends in hail precipitation in France: spatial, altitudinal, and temporal variability. Sci. World J., 494971. DOI: 10.1155/2013/494971.
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability (Part A: Global and Sectoral Aspects). Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Mach, K.J., Mastrandrea, M.D., Eds.; Cambridge University Press: New York, NY, USA, 2014.
- Karczewski, M., Michalski, A. (2018a). The study and comparison of one-dimensional kernel estimators – a new approach. Part 1. Theory and methods. ITM Web Conf. 23, DOI: 10.1051/itmconf/20182300017
- Karczewski, M., Michalski, A. (2018b). The study and comparison of one-dimensional kernel estimators – a new approach. Part 2. A hydrology case study. ITM Web Conf. 23, DOI: 10.1051/itmconf/20182300018
- Kaźmierczak, B., Kotowski, A. (2014). The influence of precipitation intensity growth on the urban drainage systems designing. Theor. Appl. Climatol., 118(1), 285-296. DOI: 10.1007/s00704-013-1067-x
- Kaźmierczak, B., Kotowski, A. (2015). The suitability assessment of a generalised exponential distribution for the description of maximum precipitation amounts. J. Hydrol., 525, 345-351. DOI: 10.1016/j.jhydrol.2015.03.063
- Kaźmierczak, B., Wdowikowski, M. (2016). Maximum Rainfall Model Based on Archival Pluviographic Records – Case Study for Legnica (Poland). Period. Polytech.-Civ., 60(2), 305-312. DOI: 10.3311/PPci.8341
- Kotowski, A., Dancewicz, A., Kaźmierczak, B. (2011). Accuracy of measurements of precipitation amount using standard and tipping bucket pluviographs in comparison to Hellmann rain gauges. Environment Protection Engineering, 37(2), 23-34.
- Kotowski, A., Kaźmierczak, B. (2013). Probabilistic models of maximum precipitation for designing sewerage. J. Hydrometeorol., 14, 1958-1965. DOI: 10.1175/JHM-D-13-01.1
- Kotowski, A., Wartalska, K., Nowakowska, M. (2016). Uogólniona metoda analityczna wymiarowania przelewowych zbiorników retencyjnych ścieków deszczowych. Ochrona Środowiska, 38(1), 45-52.
- Kuchar, L., Iwanski, S., Jelonek, L. (2017). River Flow Prediction for Future Cli-mate Using Long Series of Multi-Site Synthetic Data and MIKE SHE Model. E3S Web Conf., 17, DOI: 10.1051/e3sconf/20171700046
- Kuchar, L., Iwanski, S., Jelonek, L., Szalinska, W. (2014). Application of spatial weather generator for the assessment of climate change impacts on a river runoff. Geografie, 119(1), 1-25.
- Kundzewicz, Z. W., Kanae, S., Seneviratne, S. I., Handmer, J., Nicholls, N., Peduzzi, P., Mechler, R., Bouwer, L. M., Arnell, N., Mach, K., Muir-Wood, R., Brakenridge, R., Kron, W., Benito, G., Honda, Y., Takahashi, K., and Sherstyukov, B. (2012). Flood risk and climate change: global and regional perspectives, Hydrolog. Sci. J., 59(1), DOI: 10.1080/02626667.2013.857411
- Michalski, A. (2016). The use of kernel estimators to determine the distribution of groundwater level. Meteorol. Hydrol. Water Manage., 4(1), 41-46. DOI: 10.26491/mhwm/ 62708
- Miller, J.D., Hutchins, M. (2017). The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. Journal of Hydrology: Regional Studies, 12, 345-362. DOI: 10.1016/j.ejrh. 2017.06.006
- Moss J., Tveten, M. (2019). kdensity: Kernel Density Estimation with Parametric Starts and Asymmetric Kernels. R package version 1.0.1, https://CRAN.R-project.org/ package=kdensity
- Nguyen, H.D., Jones, A.T., McLachlan G.J. (2018). logKDE: Computing Log-Transformed Kernel Density Estimates for Positive Data, R package version 0.3.2. https://CRAN.R-project.org/package=logKDE
- Onyutha, C., Willems, P. (2015). Empirical statistical characterisation and regionalisation of amplitude-duration-frequency curves for extreme peak flows in the Lake Victoria basin, East Africa. Hydrolog. Sci. J., 60(6), 997-1012. DOI: 10. 1080/02626667. 2014.898846
- Parkinson, P. (2002). Urban drainage in developing count ries – challenges and opportunities. Waterlines, 20(4).
- Qianqian, Z. (2014). A Review of Sustainable Urban Drainage Systems Considering the Climate Change and Urbanization Impacts. Water, 6, 976-992. DOI: 10. 3390/w604 0976
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2020. URL https://www.R-project.org/
- Saboia, M.A.M., Souza Filho, F.A., Araujo Junior, L.M., Silveira C.S. (2017). Climate changes impact estimation on urban drainage system located in low latitudes districts: a study case in Fortaleza-CE. Braz. J. Water Resour., 22(21), 1-15. DOI: 10.1590/ 2318-0331.011716074
- Schardong, A., Srivastav, R.K., Simonovic, S.P. (2014). Equidistance quantile matching method for updating IDF curves under climate change. Water Resour. Manage., 28(9), 2539-2562. DOI: 10.1007/s11269-014-0626-y
- Schiermeier, Q. (2011). Increased flood risk linked to global warming: likelihood of extreme rainfall may have been doubled by rising greenhouse-gas levels. Nature, 470(7334), 316. DOI: 10.1038/470316a
- Shinyie, W. L., Ismail, N., Jemain, A.A. (2014). Semi-parametric estimation based on second order parameter for selecting optimal threshold of extreme rainfall events. Water Resource Manage., 28, 3489-3514.
- Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. London: Chapman & Hall.
- Walsh, K.J.E., McBride, J.L., Klotzbach, P.J., Balachandran, S., Camargo, S.J., Holland, G., Knutson, T.R., Kossin, J.P., Lee, T., Sobel, A., Sugi, M. (2016). Tropical cyclones and climate change. WIREs Clim. Change, 7(1), 65-89. DOI: 10.1002/wcc.371
- Wand, M.P., Jones, M.C. (1995). Kernel Smoothing. London, Chapman & Hall.
- Wdowikowski, M., Kaźmierczak, B., Ledvinka, O. (2016). Maximum daily rainfall analysis at selected meteorological stations in the upper Lusatian Neisse River basin. Meteorol. Hydrol. Water Manage., 4(1), 53-63. DOI: 10.26491/mhwm/63361
- WMO-No. 1203: WMO Guidelines on the Calculation of Climate Normals, Geneva, 2017.
- Yang, L., Smith, J.A., Wright, D.B., Baeck, M.L., Villarini, G., Tian, F., Hu, H. (2013). Urbanisation and Climate Change: An Examination of Nonstationarities in Urban Flooding. Journal of Hydrometeorology, 14(6), 1791-1809. DOI: 10.1175/JHM-D-12-095.1
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5c8a80a-35e2-4a34-b437-0f79932e4f66