Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Sztywność mieszanek MCE na bazie ubocznych cementowych produktów pylastych i kruszywa z recyklingu
Języki publikacji
Abstrakty
This paper presents the possibilities of reusing recycled materials in road pavement constructions. This study analyses the effects of reclaimed asphalt pavement (RAP) and cement dusty by-products (UCPP) on the stiffness of mineral-cement-emulsion (MCE) mixtures. Asphalt waste can be used as a secondary raw material for the preparation of cement-stabilised mixtures in cold recycling technology. The use of MCE mixtures in road pavement construction is one way of disposing of construction waste. Testing of MCE mixtures with UCPP was aimed at confirming the applicability of these materials for cold recycled pavement structure layers. The purpose was to evaluate the effect of the innovative UCPP binding agent on the mechanical properties of MCE mixtures. The stiffness of the mixtures in question was analysed. Tests were carried out for fine- and coarse-grained mixtures. The stiffness modulus in indirect tension test on cylindrical specimens (IT-CY) was carried out according to EN 12697-26. Indirect tensile strength (ITS) testing was carried out according to EN 12697-23. The use of innovative binders has made it possible to reduce the stiffness of individual MCE mixtures compared to reference mixtures containing conventional cement, while still maintaining adequate durability. The relationships developed between IT-CY stiffness and ITS strength will allow the design and execution of MCE mixtures in road pavements to be optimised. The use of UCPP changed the mechanical properties of MCE mixtures by reducing their stiffness. This will contribute to the cracking resistance of the base and sub-base layers and increase their fatigue life. The innovative material was used in the experimental section and it is being monitored.
W artykule przedstawiono możliwości powtórnego zastosowania materiałów pochodzących z recyklingu w konstrukcjach nawierzchni drogowych. W pracy analizowano wpływ destruktu asfaltowego i ubocznych cementowych produktów pylastych (UCPP) na sztywność mieszanek mineralno-cementowo-emulsyjnych (MCE). Destrukt asfaltowy może być wykorzystany jako surowiec wtórny do przygotowania mieszanek stabilizowanych cementem w technologii recyklingu na zimno. Zastosowanie w nawierzchniach drogowych mieszanek MCE jest jednym ze sposobów utylizacji odpadów budowlanych. Badania mieszanek MCE z UCPP miały na celu potwierdzenie możliwości zastosowania tych materiałów do warstw konstrukcji nawierzchni, poddanych recyklingowi na zimno. Istotą była ocena wpływu innowacyjnego środka wiążącego UCPP na właściwości mechaniczne mieszanek MCE. Analizowano sztywność przedmiotowych mieszanek. Badania wykonano dla mieszanek: drobnoziarnistej i gruboziarnistej. Badania sztywności w pośrednim rozciąganiu (IT-CY) wykonano wg normy PN-EN 12697-26. Badanie wytrzymałości na rozciąganie pośrednie (ITS) wykonano wg PN-EN 12697-23. Zastosowanie innowacyjnych spoiw pozwoliło na redukcję sztywności poszczególnych mieszanek MCE w porównaniu do mieszanek referencyjnych, zawierających klasyczny cement, przy zachowaniu ich odpowiedniej trwałości. Opracowane zależności pomiędzy sztywnością IT-CY a wytrzymałością ITS pozwolą na optymalizację procesu projektowania i wykonywania mieszanek MCE w nawierzchniach drogowych. Stosowanie UCPP zmieniło właściwości mechaniczne mieszanek MCE, ograniczając ich sztywność. Przyczyni się to do zwiększenia odporności na pękanie podbudowy i zwiększenie jej trwałości zmęczeniowej. Innowacyjny materiał został wykorzystany na odcinku doświadczalnym i jest monitorowany.
Wydawca
Czasopismo
Rocznik
Tom
Strony
579--592
Opis fizyczny
Bibliogr. 71 poz. rys., tab.
Twórcy
autor
- Wrocław University of Science and Technology, Faculty of Civil Engineering, 41 Wybrzeże Wyspiańskiego Str., 50-370 Wrocław
autor
- Wrocław University of Science and Technology, Faculty of Civil Engineering, 41 Wybrzeże Wyspiańskiego Str., 50-370 Wrocław
Bibliografia
- 1. Kukiełka J.: Asphalt pavements of local government roads. Lublin University of Technology, Lublin, 2013
- 2. Merrill D., Nunn M., Carswell I.: A guide to the use and specification of cold recycled materials for the maintenance of road pavements. Transport Research Laboratory (TRL), Report 611, 2004
- 3. Lewis A., Collings D.: Cold in place recycling: a relevant process for road rehabilitation and upgrading. 7th Conference on Asphalt Pavements for Southern Africa, CAPSA, 29 August – 2 September 1999
- 4. Weinert F.: Merkblatt Kaltrecycling in situ – Betonstrassentagung 2001. Heft 25 (FGSV: Merkblatt für Kaltrecycling in situ im Straßenoberbau), Entwurf, Köln, 2002
- 5. Jasieński A., Rens L.: In situ recycling with cement – the Belgian experience. Seminar on Road Pavement Recycling, Warsaw, Poland, 10–11 October 2002
- 6. Zhang J., Ding L., Li F., Peng J.: Recycled aggregates from construction and demolition wastes as alternative filling materials for highway subgrades in China. Journal of Cleaner Production, 255, 120223, 2020, DOI: 10.1016/j.jclepro.2020.120223
- 7. Mehrjardi G.T., Azizi A., Haji-Azizi A., Asdollafardi G.: Evaluating and improving the construction and demolition waste technical properties to use in road construction. Transportation Geotechnics, 23, 100349, 2020, DOI: 10.1016/j.trgeo.2020.100349
- 8. Huber S., Henzinger C., Heyer D.: Influence of water and frost on the performance of natural and recycled materials used in unpaved roads and road shoulders. Transportation Geotechnics, 22, 100305, 2020, DOI: 10.1016/j.trgeo.2019.100305
- 9. Tavira J., Jiménez J.R., Ledesma E.F., López-Uceda A., Ayuso J.: Real-scale study of a heavy traffic road built with in situ recycled demolition waste. Journal of Cleaner Production, 248, 119219, 2020, DOI: 10.1016/j.jclepro.2019.119219
- 10. Cristelo N., Vieira C.S., de Lurdes Lopes M.: Geotechnical and geoenvironmental assessment of recycled construction and demolition waste for road embankments. Procedia Engineering, 143, 2016, 51–58, DOI: 10.1016/j.proeng.2016.06.007
- 11. Soleimanbeigi A., Edil T.B.: Compressibility of recycled materials for use as highway embankment fill. Journal of Geotechnical and Geoenvironmental Engineering, 141, 5, 2015, DOI: 10.1061/(ASCE)GT.1943-5606.0001285
- 12. Liu L., Li Z., Cai G., Liu X., Yan S.: Humidity field characteristics in road embankment constructed with recycled construction wastes. Journal of Cleaner Production, 259, 120977, 2020, DOI: 10.1016/j.jclepro.2020.120977
- 13. Liu L., Li Z., Congress S.S.C., Liu X., Dai B.: Evaluating the influence of moisture on settling velocity of road embankment constructed with recycled construction wastes. Construction and Building Materials, 241, 117988, 2020, DOI: 10.1016/j.conbuildmat.2019.117988
- 14. Arulrajah A., Disfani M.M., Horpibulsuk S., Suksiripattanapong C., Prongmanee N.: Physical properties and shear strength responses of recycled construction and demolition materials in unbound pavement base/subbase applications. Construction and Building Materials, 58, 2014, 245–257, DOI: 10.1016/j.conbuildmat.2014.02.025
- 15. Azam A.M., Cameron D.A.: Geotechnical properties of blends of recycled clay masonry and recycled concrete aggregates in unbound pavement construction. Journal of Materials in Civil Engineering, 25, 6, 2013, 788–798, DOI: 10.1061/(ASCE)MT.1943-5533.0000634
- 16. Gabr A.R., Cameron D.A.: Properties of recycled concrete aggregate for unbound pavement construction. Journal of Materials in Civil Engineering, 24, 6, 2012, DOI: 10.1061/(ASCE)MT.1943-5533.0000447
- 17. Anghelescu L., Cruceru M., Diaconu B.: Building materials obtained by recycling coal ash and waste drilling fluid and characterization of engineering properties by means of Artificial Neural Networks. Construction and Building Materials, 227, 116616, 2019, DOI: 10.1016/j.conbuildmat.2019.07.342
- 18. Xue Y., Arulrajah A., Narsilio G.A., Horpibulsuk S., Chu J.: Washed recycled sand derived from construction and demolition wastes as engineering fill materials. Construction and Building Materials, 358, 129433, 2022, DOI: 10.1016/j.conbuildmat.2022.129433
- 19. Huang Y., Bird R.N., Heidrich O.: A review of the use of recycled solid waste materials in asphalt pavements. Resources, Conservation and Recycling, 52, 1, 2007, 58–73, DOI: 10.1016/j.resconrec.2007.02.002
- 20. Rongali U., Singh G., Chourasiya A., Jain Dr P.K.: Laboratory investigation on use of fly ash plastic waste composite in bituminous concrete mixtures. Procedia – Social and Behavioral Sciences, 104, 2013, 89–98, DOI: 10.1016/j.sbspro.2013.11.101
- 21. Wang Q.Z., Wang N.N., Tseng M.L., Huang Y.M., Li N.L.: Waste tire recycling assessment: Road application potential and carbon emissions reduction analysis of crumb rubber modified asphalt in China. Journal of Cleaner Production, 249, 4, 119411, 2020, DOI: 10.1016/j.jclepro.2019.119411
- 22. Nanjegowda V.H., Biligiri K.P.: Recyclability of rubber in asphalt roadway systems: A review of applied research and advancement in technology. Resources, Conservation & Recycling, 155, 104655, 2020, DOI: 10.1016/j.resconrec.2019.104655
- 23. Zhong H., Chen M., Zhang M.: Engineering properties of sustainable engineered cementitious composites with recycled tyre polymer fibres. Construction and Building Materials, 370, 130672, 2023, DOI: 10.1016/j.conbuildmat.2023.130672
- 24. Ren J., Wang S., Zang G.: Effects of recycled aggregate composition on the mechanical characteristics and material design of cement stabilized cold recycling mixtures using road milling materials. Construction and Building Materials, 244, 118329, 2020, DOI: 10.1016/j.conbuildmat.2020.118329
- 25. Zhang L.W., Sojobi A., Kodur V.R., Liew K.M.: Effective utilization and recycling of mixed recycled aggregates for a greener environment. Journal of Cleaner Production, 236, 10, 117600, 2019,DOI: 10.1016/j.jclepro.2019.07.075
- 26. Visintin P., Xie T., Bennett B.: A large-scale life-cycle assessment of recycled aggregate concrete: The influence of functional unit, emissions allocation and carbon dioxide uptake. Journal of Cleaner Production, 248, 119243, 2020, DOI: 10.1016/j.jclepro.2019.119243
- 27. Instructions for the design and embedding of mineral-cement-emulsion mixtures (MCE). General Directorate for National Roads and Motorways (GDDKiA), Annex No. 9.4.2 RID, 2019
- 28. Fang L., Zhou J., Yang Z., Yuan Q., Que Y.: Interaction between cement and asphalt emulsion and its influences on asphalt emulsion demulsification, cement hydration and rheology. Construction and Building Materials, 329, 127220, 2022, DOI: 10.1016/j.conbuildmat.2022.127220
- 29. Yang W., Ouyang J., Meng Y., Han B., Sha Y.: Effect of curing and compaction on volumetric and mechanical properties of cold-recycled mixture with asphalt emulsion under different cement contents. Construction and Building Materials, 297, 123699, 2021, DOI: 10.1016/j.conbuildmat.2021.123699
- 30. Kukiełka J., Bańkowski W.: The experimental study of mineral-cement-emulsion mixtures with rubber powder addition. Construction and Building Materials, 226, 2019, 759–766, DOI: 10.1016/j.conbuildmat.2019.07.276
- 31. Kuźniewski J., Skotnicki Ł.: Properties of mineral-cement emulsion mixtures based on concrete aggregates from recycling. Case Studies in Construction Materials, 12, e00309, 2019, DOI: 10.1016/j.cscm.2019.e00309
- 32. Dołżycki B., Jaskuła P.: Review and evaluation of cold recycling with bitumen emulsion and cement for rehabilitation of old pavements. Journal of Traffic and Transportation Engineering (English Edition), 6, 4, 2019, 311–323, DOI: 10.1016/j.jtte.2019.02.002
- 33. López-Alonso M., Martinez-Echevarria M.J., Garach L., Galán A., Ordoñez J., Agrela F.: Feasible use of recycled alumina combined with recycled aggregates in road construction. Construction and Building Materials, 195, 2019, 249–257, DOI: 10.1016/j.conbuildmat.2018.11.084
- 34. Birgisdóttir H., Bhander G., Hauschild M.Z., Christensen T.H.: Life cycle assessment of disposal of residues from municipal solid waste incineration: Recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model. Waste Management, 27, 8, 2007, S75–S84, DOI: 10.1016/j.wasman.2007.02.016
- 35. Loaiza A., Colorado H.A.: Marshall stability and flow tests for asphalt concrete containing electric arc furnace dust waste with high ZnO contents from the steel making process. Construction and Building Materials, 166, 2018, 769–778, DOI: 10.1016/j.conbuildmat.2018.02.012
- 36. Juveria F., Rajeev F.J.P., Jegatheesan P., Sanjayan J.: Impact of stabilisation on mechanical properties of recycled concrete aggregate mixed with waste tyre rubber as a pavement material. Case Studies in Construction Materials, 18, e02001, 2023, DOI: 10.1016/j.cscm.2023.e02001
- 37. Liu L., Cai G., Zhang J., Liu X., Liu K.: Evaluation of engineering properties and environmental effect of recycled waste tire-sand/soil in geotechnical engineering: A compressive review. Renewable and Sustainable Energy Reviews, 126, 109831, 2020, DOI: 10.1016/j.rser.2020.109831
- 38. Nanjegowda V.H., Biligiri K.P.: Recyclability of rubber in asphalt roadway systems: A review of applied research and advancement in technology. Resources, Conservation & Recycling, 155, 104655, 2020, DOI: 10.1016/j.resconrec.2019.104655
- 39. Xue Y., Liu C., Qu J., Lv S., Ju Z., Ding S., An H., Ren K.: Research on pavement performance of recycled asphalt mixture based on separation technology of asphalt and aggregate in RAP. Construction and Building Materials, 393, 132103, 2023, DOI: 10.1016/j.conbuildmat.2023.132103
- 40. Li M., Liu L., Huang W., Wang H.: Study on the mixing process improvement for hot recycled asphalt mixture. Construction and Building Materials, 365, 130068, 2023, DOI: 10.1016/j.conbuildmat.2022.130068
- 41. Yao X., Xu T.: Fatigue fracture and self-healing behaviors of cold recycled emulsified asphalt mixture containing microcapsules based on semicircular bending test. Journal of Cleaner Production, 410, 137171, 2023, DOI: 10.1016/j.jclepro.2023.137171
- 42. Naser M., Abdel-Jaber M., Al-shamayleh R., Louzi N., Ibrahim R.: Evaluating the effects of using reclaimed asphalt pavement and recycled concrete aggregate on the behavior of hot mix asphalts. Transportation Engineering, 10, 100140, 2022, DOI: 10.1016/j.treng.2022.100140
- 43. Dareyni M., Pourjafar S.V., Moghaddam A.M.: Cationic asphalt emulsion as an additive of RCC Pavement: Exploring for Mode-I fracture behavior and dynamic modulus properties. Engineering Fracture Mechanics, 283, 109211, 2023, DOI: 10.1016/j.engfracmech.2023.109211
- 44. Angelakopoulos H., Papastergiou P., Pilakoutas K.: Fibrous roller-compacted concrete with recycled materials – feasibility study. Magazine of Concrete Research, 67, 15, 2015, 801–811, DOI: 10.1680/macr.14.00246
- 45. Beja I.A., Motta R., Bernucci L.B.: Application of recycled aggregates from construction and demolition waste with Portland cement and hydrated lime as pavement subbase in Brazil. Construction and Building Materials, 258, 119520, 2020, DOI: 10.1016/j.conbuildmat.2020.119520
- 46. Song X., Qiao P., Wen H.: Recycled aggregate concrete enhanced with polimer aluminium sulfate. Magazine of Concrete Research, 67, 10, 2015, 496–502, DOI: 10.1680/macr.14.00119
- 47. Nwakaire C.M., Yap S.P., Yuen C.W., Onn C.C., Koting S., Babalghaith A.M.: Laboratory study on recycled concrete aggregate based asphalt mixtures for sustainable flexible pavement surfacing. Journal of Cleaner Production, 262, 121462, 2020, DOI: 10.1016/j.jclepro.2020.121462
- 48. Kox S., Vanroelen G., Van Herck J., de Krem H., Vandoren B.: Experimental evaluation of the high-grade properties of recycled concrete aggregates and their application in concrete road pavement construction. Case Studies in Construction Materials, 11, e00282, 2019, DOI: 10.1016/j.cscm.2019.e00282
- 49. Chen T., Luan Y., Ma T., Zhu J., Huang X., Ma S.: Mechanical and microstructural characteristics of different interfaces in cold recycled mixture containing cement and asphalt emulsion. Journal of Cleaner Production, 258, 120674, 2020, DOI: 10.1016/j.jclepro.2020.120674
- 50. Chen T., Ma T., Huang X., Ma S., Tang F., Wu S.: Microstructure of synthetic composite interfaces and verification of mixing order in cold-recycled asphalt emulsion mixture. Journal of Cleaner Production, 263, 121467, 2020, DOI: 10.1016/j.jclepro.2020.121467
- 51. Bai G., Zhu C., Liu C., Liu B.: An evaluation of the recycled aggregate characteristics and the recycled aggregate concrete mechanical properties. Construction and Building Materials, 240, 117978, 2020, DOI: 10.1016/j.conbuildmat.2019.117978
- 52. Chen T., Luan Y., Ma T., Zhu J., Huang X., Ma S.: Mechanical and microstructural characteristics of different interfaces in cold recycled mixture containing cement and asphalt emulsion. Journal of Cleaner Production, 258, 120674, 2020, DOI: 10.1016/j.jclepro.2020.120674
- 53. Corradini A., Cerni G., Porceddu P.R.: Comparative study on resilient modulus of natural and post-quake recycled aggregates in bound and unbound pavement subbase applications. Construction and Building Materials, 297, 123717, 2021, DOI: 10.1016/j.conbuildmat.2021.123717
- 54. Noura S., Yaghoubi E., Fragomeni S., Wasantha P.L.P., Van Staden R.: Fatigue and stiffness characteristics of asphalt mixtures made of recycled aggregates. International Journal of Fatigue, 174, 107714, 2023, DOI: 10.1016/j.ijfatigue.2023.107714
- 55. Dołżycki B., Jaczewski M., Szydłowski C.: The long-term properties of mineral-cement-emulsion mixtures. Construction and Building Materials, 156, 2017, 799–808, DOI: 10.1016/j.conbuildmat.2017.09.032
- 56. Skotnicki Ł., Kuźniewski J.: Cracking resistance of recycled mineral-cement-emulsion mixtures. Roads and Bridges – Drogi i Mosty, 22, 1, 2023, 19–39, DOI: 10.7409/rabdim.023.002
- 57. Zhou J., Zeng M., Chen Y., Zhong M.: Evaluation of cement stabilized recycled concrete aggregates treated with waste oil and asphalt emulsion. Construction and Building Materials, 199, 2019, 143–153, DOI: 10.1016/j.conbuildmat.2018.12.028
- 58. Guha A.H., Assaf G.J.: Effect of Portland cement as a filler in hot-mix asphalt in hot regions. Journal of Building Engineering, 28, 101036, 2020, DOI: 10.1016/j.jobe.2019.101036
- 59. Du S.: Mechanical properties and shrinkage characteristics of cement stabilized macadam with asphalt emulsion. Construction and Building Materials, 203, 2019, 408–416, DOI: 10.1016/j.conbuildmat.2019.01.126
- 60. Skotnicki Ł., Kuźniewski J., Szydło A.: Stiffness identification of foamed asphalt mixtures with cement, evaluated in laboratory and in situ in road pavements. Materials, 13, 5, 1128, 2020, 1–19, DOI: 10.3390/ma13051128
- 61. Kuźniewski J., Skotnicki Ł.: Influence of the compaction method on mineral-cement emulsion mixture properties. Journal of Materials in Civil Engineering, 28, 11, 04016138, 2016, 1–9, DOI: 10.1061/(ASCE)MT.1943-5533.0001651
- 62. Kuźniewski J., Skotnicki Ł., Szydło A.: Fatigue durability of asphalt-cement mixtures. Bulletin of the Polish Academy of Sciences Technical Sciences, 63, 1, 2020, 107–111, DOI: 10.1515/bpasts-2015-0012
- 63. PN-EN 13286-2:2010 Unbound and hydraulically bound mixtures – Part 2: Test methods for the determination of the laboratory reference density and water content – Proctor compaction
- 64. Szydło A., Mackiewicz P., Skotnicki Ł., Kuźniewski J.: Evaluation of the impact of an innovative binding agent on the physical, mechanical and rheological properties of a recycled base layer, made of a mineral-binder mixture with an asphalt emulsion. in: TECHMATSTRATEG “Modern Material Technologies” Program, Report No. 3/2/PWr/2019. Wroclaw University of Science and Technology, Wroclaw, Poland, 2019
- 65. Szydło A., Mackiewicz P., Skotnicki Ł., Kuźniewski J.: An innovative technology using binding agent optimization that provides long service life of cold-recycled pavement construction – Report of the Institute of Civil Engineering on Wroclaw University of Science and Technology no. SPR 74. Wroclaw University, Wroclaw, Poland, 2019
- 66. PN-EN 13808:2013-10 Bitumen and bituminous binders – Framework for specifying cationic bituminous emulsions
- 67. Zhang Z., Cong C., Xi W., Li S.: Application research on the performances of pavement structure with foamed asphalt cold recycling mixture. Construction and Building Materials, 169, 2018, 396–402, DOI: 10.1016/j.conbuildmat.2018.02.134
- 68. Gui-Ping H., Wing-Gun W.: Effects of moisture on strength and permanent deformation of foamed asphalt mix incorporating RAP materials. Construction and Building Materials, 22, 1, 2008, 30–40, DOI: 10.1016/j.conbuildmat.2006.06.033
- 69. Yan J., Ni F., Yang M., Li J.: An experimental study on fatigue properties of emulsion and foam cold recycled mixes. Construction and Building Materials, 24, 11, 2010, 2151–2156, DOI: 10.1016/j.conbuildmat.2010.04.044
- 70. PN-EN 12697-26:2018-08 Bituminous mixtures – Test methods – Part 26: Stiffness
- 71. PN-EN 12697-23:2017-12 Bituminous mixtures – Test methods – Part 23: Determination of the indirect tensile strength of bituminous specimens
Uwagi
An extended version of the article from the Conference ‟Modern Road Pavements – MRP’2023” – Recycling in road pavement structures co-edited by Martins Zaumanis and Marcin Gajewski, published in frame of the Ministry of Education and Science project No. RCN/SP/0569/2021/1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5c535c4-9aff-440a-984b-73706f5d7428