Identyfikatory
Warianty tytułu
Accuracy of global land cover datasets: example of Global Land Cover Characterization Data Base
Konferencja
Ogólnopolskie Sympozjum Geoinformacji „Geoinformacja zintegrowanym narzędziem badań przestrzennych” (15-17.09.2003 ; Wrocław – Polanica Zdrój, Polska)
Języki publikacji
Abstrakty
W badaniach oceniono dokładność wyznaczenia powierzchni europejskich lasów w bazie danych Global Land Cover Characterization (GLCC). Jako dane referencyjne wykorzystana została mapa CORINE Major Land Cover Types of Europe. Dla danych zagregowanych do dwóch klas: lasy i obszary nieleśne obliczono wskaźniki dokładności. Przestrzenne zróżnicowanie dokładności badano w polach podstawowych 100 × 100 km. Powierzchnie lasów w obu bazach danych są zbliżone, co wynika z kompensowania się błędów niedoszacowania i przeszacowania powierzchni leśnej w bazie danych GLCC. Lesistość szacowana za pomocą GLCC może znacząco różnić się od wartości faktycznych. Przeszacowanie powierzchni leśnej cechuje Skandynawię, niedoszacowanie niziny zachodniej i środkowej Europy. Współczynnik Kappa zmienia się od 0 do 70%. Wartości wskaźników dokładności są zależne od faktycznej lesistości. Błędy w oszacowaniu powierzchni leśnej danych GLCC wynikają przede wszystkim z wykorzystania danych wejściowych o małej rozdzielczości przestrzennej dla obszarów o znacznej heterogeniczności użytkowania ziemi i pokrycia terenu. Błędy te mogą być korygowane za pomocą prostych technik kalibracyjnych.
The study attempts to estimate the accuracy of the delimitation of European forests within the Global Land Cover Characterization (GLCC) Data Base. As a reference, CORINE Major Land Cover Types of Europe data set was used. The analysis was carried out for data aggregated to two classes: forests and non-forest areas. Matrix overlays allowed computation of accuracy indices. Kappa coefficient and the difference of actual (CORINE) and predicted (GLCC) forest proportion were mapped for spatial units 100 × 100 km. The area of forests derived from the CORINE data equals 1.18•106 km2, and the value predicted is almost exactly the same, 1.17•106 km2. User’s and producer’s accuracies of forest delimitation equal 57%. Local differences between actual and predicted forest proportion may exceed 25 percentage points. Overestimation of the forest area occurs in Scandinavia, while underestimation in lowland Western and Central Europe. Kappa coefficient varies from 0 up to almost 70%. Low values were found in lowland Central and Western Europe, Ireland, the Mediterranean and Scandinavia. Values exceeding 40% were observed in a belt stretching from northern Spain to Bulgaria. Differences between actual and predicted forest proportion, as well as Kappa coefficient depend on the actual forest proportion. Errors of forest delimitation within the GLCC data set are related mainly to the classification of coarse resolution data in areas of highly diverse land cover pattern. The overestimation of dominant land cover classes in the GLCC leads to locally inaccurate predictions, which should be calibrated for the purposes of regional research.
Słowa kluczowe
Rocznik
Tom
Strony
97--107
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
- Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego Zakład Systemów Informacji Geograficznej
Bibliografia
- 1. Achard F., Eva H., Mayaux P., 2001. Tropical forest mapping from coarse spatial resolution satellite data: production and accuracy assessment issues. International Journal of Remote Sensing 22, 14: 2741–2762. Baranowski M.,
- 2. Ciołkosz A., Nowa mapa użytkowania ziemi w Polsce jako pochodna bazy danych „CORINE Land Cover”. Polski Przegląd Kartograficzny 29, 4: 219–228.
- 3. Belward A. S., Estes J. E., Kline K. D., 1999. The IGBP-DIS Global 1-Km Land-Cover Data Set DISCover: A Project Overview. Photogrammetric Engineering & Remote Sensing 65, 9: 1013–1020. Bossard M.,
- 4. Feranec J., Otahel J., 2000. The revised and supplemented Corine land cover nomenclature. Technical report 38, European Environmental Agency, 110 ss.
- 5. Brown J. F., Loveland T. R., Ohlen D. O., Zhu Z., 1999. The Global Land-Cover Characteristics Database: The Users’ Perspective. Photogrammetric Engineering & Remote Sensing 65, 9: 1069–1074.
- 6. Cihlar J., 2000. Land cover mapping of large areas from satellites: status and research priorities. International Journal of Remote Sensing 21, 6&7: 1093–1114.
- 7. Congalton R. G., Green K., 1993. A Practical Look at the Sources of Confusion in Error Matrix Generation. Photogrammetric Engineering & Remote Sensing 59, 5: 641–644.
- 8. DeFries R. S., Belward A. S., 2000. Global and regional land cover characterization from satellite data: an introduction to the Special Issue. International Journal of Remote Sensing 21, 6&7: 1083–1092.
- 9. DeFries R. S., Hansen M., Steininger M., Dubayah R., Sohlberg R., Townshend J., 1997. Subpixel Forest Cover in Central Africa from Multisensor, Multitemporal Data. Remote Sensing of Environment 60: 228–246.
- 10. Foody G.M., 2002. Status of land cover classification accuracy assessment. Remote Sensing of Environment 80: 185–201.
- 11. Friedl M. A., McIver D. K., Hodges J. C. F., Zhang X. Y., Muchoney D., Strahler A. H., Woodcock C. E., Gopal S., Schneider A., Cooper A., Baccini A., Gao F., Schaaf C., 2002. Global land cover mapping from MODIS: algorithms and early results. Remote Sensing of Environment 83: 287–302.
- 12. Global Land Cover Characteristics Data Base Documentation, 2000. U.S. Geological Survey EROS Data Center. Internet: http://edcwww.cr.usgs.gov. Håme T., Stenberg P., Andersson K., Rauste Y., Kennedy P., Folving S., Sarkela J., 2001. AVHRR-based forest proportion map of the Pan-European area. Remote Sensing of Environment 77: 76–91
- 13. Hansen M. C., DeFries R. S., Townshend J. R. G., Sohlberg R., Dimiceli C., Carroll M., 2002. Towards an operational MODIS continuous field of percent tree cover algorithm: examples using AVHRR and MODIS data. Remote Sensing of Environment 83: 303–319.
- 14. Hansen M. C., Reed B., 2000. A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products. International Journal of Remote Sensing 21, 6&7: 1365–1373.
- 15. Janetos, A.C., Ahern, F., 1997, CEOS Pilot Project: Global Observation of Forest Cover (GOFC). Ottawa Workshop Report, July 7–10, 1997.
- 16. Loveland T. R., Reed B. C., Brown J. C., Ohlen D. O., Zhu Z., Yang L., Merchant J. W., 2000. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing 21, 6&7: 1303–1330.
- 17. Loveland T. R., Zhu Z., Ohlen D. O., Brown J. C., Reed B. C., Yang L., 1999. An Analysis of the IGBP Global Land-Cover Characterization Process. Photogrammetric Engineering & Remote Sensing 65, 9: 1021–1032.
- 18. Mayaux P., Bartholome E.,
- 19. Massart M., Belward A. S., 2002. The land cover of Africa for the year 2000. LUCC (Land Use and Land Cover Change) Newsletter 8: 4–6.
- 20. Mayaux P., Lambin E. F., 1995. Estimation of Tropical Forest Area from Coarse Spatial Resolution Data: A Two-Step Correction Function for Proportional Errors Due to Spatial Aggregation. Remote Sensing of Environment 53:1–15.
- 21. Mayaux P., Lambin E. F., 1997. Tropical Forest Area measured from Global Land-Cover Classifications: Inverse Calibration Models Based on Spatial Textures. Remote Sensing of Environment 59: 29–43.
- 22. Moody A., Woodcock C. E., 1994. Scale-dependent errors in the estimation of land-cover proportions – implications for global land-cover datasets. Photogrammetric Engineering & Remote Sensing, 60, 5: 585–594.
- 23. Moody A., Woodcock C. E., 1996. Calibration-Based Models for Correction of Area Estimates Derived from Coarse Resolution Land-Cover Data. Remote Sensing of Environment 58: 225–241.
- 24. Moody A., 1998. Using Landscape Spatial Relationships to Improve Estimates of Land-Cover Area from Coarse Resolution Remote Sensing. Remote Sensing of Environment 64: 202–220.
- 25. Mücher C. A., Steinnocher K. T., Kressler F. P., Heunks C., 2000. Land cover characterization and change detection for environmental monitoring of pan-Europe. International Journal of Remote Sensing 21, 6&7: 1159–1181.
- 26. Perdigão V., Annoni A., 1997. Technical and methodological guide for updating CORINE Land Cover data base. European Commission, EUR 17288, 140 pp.
- 27. Scepan J., 1999. Thematic Validation of High-Resolution Global Land-Cover Data Sets. Photogrammetric Engineering & Remote Sensing 65, 9: 1051–1060.
- 28. Stehman S. V., Czaplewski R. L., 1998. Design and Analysis for Thematic Map Accuracy Assessment: Fundamental Principles. Remote Sensing of Environment 64: 331–344.
- 29. Teillet P. M., El Saleous N., Hansen M. C., Eidenshink J. C., Justice C. O., Townshend J. R. G., 2000. An evaluation of the global 1-km AVHRR land dataset. International Journal of Remote Sensing 21, 10: 1987–2021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5bc8213-1b7e-4c40-8f05-4da3884095de