Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Tissue engineering enables the development of tissues and organs that closely replicate physiological dimensions and functions. This field aims to address challenges related to organ transplantation, regenerative medicine, and the treatment of damaged tissues by designing biomaterials that can support cellular growth and tissue repair. One of the most important aspects of tissue engineering is the development of advanced delivery systems for drugs and active substances, which play a critical role in promoting regeneration. Controlled release, stability, and compatibility with the engineered environment are crucial parameters for these systems, as they influence the effectiveness and safety of therapeutic applications. In this study, microbeads for active compounds delivery were designed using two materials: a chitosan-polyvinyl alcohol (9:1 CS:PVA) polymer blend and pure chitosan modified with a polyphenolic compound, gallic acid. The physicochemical properties of the obtained microspheres, such as swelling ratio, microstructure, wettability, and active compound release, were analysed. The 9:1 CS:PVA+GA composite demonstrated the most promising characteristics as an active substance carrier, particularly due to its favourable release profile. These results suggest that this material could be an effective drug delivery system that offers controlled and sustained release of therapeutic agents. Further research, especially investigating the biological properties of these materials, is needed to fully confirm their suitability for practical applications in drug delivery and tissue engineering.
Czasopismo
Rocznik
Tom
Strony
art. no. 10
Opis fizyczny
Bibliogr. 24 poz., wykr., zdj.
Twórcy
autor
- AGH University of Krakow, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Department of Biocybernetics and Biomedical Engineering, al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Krakow, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
- [1] S. Adepu, S. Ramakrishna: Controlled drug delivery systems: Current status and future directions. Molecules 26(19) (2021), doi:10.3390/molecules26195905.
- [2] F. Sabbagh, B.S. Kim: Recent advances in polymeric transdermal drug delivery systems. J. Control. Release 341 (2022) 132-146, doi:10.1016/j.jconrel.2021.11.025.
- [3] S. Bandopadhyay, S. Manchanda, A. Chandra, J. Ali, P.K. Deb: Overview of different carrier systems for advanced drug delivery. Elsevier Inc., 2019.
- [4] M. Vigata, C. Meinert, D.W. Hutmacher, N. Bock: Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques. Pharmaceutics 12(12) (2020) 1-45, doi:10.3390/pharmaceutics12121188.
- [5] J. Li, D.J. Mooney: Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1(12) (2016) 1-18, doi:10.1038/natrevmats.2016.71.
- [6] Z. Zou et al.: A sodium alginate-based sustained-release IPN hydrogel and its applications. RSC Adv. 10(65) (2020) 39722-39730, doi:10.1039/d0ra04316h.
- [7] T.R. Hoare, D.S. Kohane: Hydrogels in drug delivery: Progress and challenges. Polymer (Guildf) 49(8) (2008) 1993-2007, doi:10.1016/j.polymer.2008.01.027.
- [8] S. Jacob, A.B. Nair, J. Shah, N. Sreeharsha, S. Gupta, P. Shinu: Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management. Pharmaceutics 13(3) (2021), doi:10.3390/pharmaceutics13030357.
- [9] W. Wei et al.: Synthesis and characterization of a multi-sensitive polysaccharide hydrogel for drug delivery. Carbohydr. Polym. 177 (2017) 275-283, doi:10.1016/j.carbpol.2017.08.133.
- [10] M. Kaur et al.: Chitosan-Based Polymer Blends for Drug Delivery Systems. Polymers (Basel) 15(9) (2023), doi:10.3390/polym15092028.
- [11] N.N. Nyamweya: Applications of polymer blends in drug delivery. Futur. J. Pharm. Sci. 7(1) (2021), doi:10.1186/s43094-020-00167-2.
- [12] X. Tong, W. Pan, T. Su, M. Zhang, W. Dong, X. Qi: Recent advances in natural polymer-based drug delivery systems. React. Funct. Polym. 148 (2020) 104501, doi:10.1016/j.reactfunctpolym. 2020.104501.
- [13] T. Kean, M. Thanou: Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Deliv. Rev. 62(1) (2010) 3-11, doi:10.1016/j.addr.2009.09.004.
- [14] H.S. Rahman et al.: Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. Int. J. Nanomedicine 15 (2020) 2439-2483, doi:10.2147/IJN.S227805.
- [15] N. Kahkeshani et al.: Pharmacological effects of gallic acid in health and disease: A mechanistic review. Iran. J. Basic Med. Sci. 22(3) (2019) 225-237, doi:10.22038/ijbms.2019.32806.7897.
- [16] J. Zhao, I.A. Khan, F.R. Fronczek: Gallic acid, Acta Crystallogr. Sect. E Struct. Reports Online 67(2) (2011), doi:10.1107/S1600536811000262.
- [17] Y. Lu et al.: Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells. Eur. J. Pharmacol. 641(2-3) (2010) 102-107, doi:10.1016/j.ejphar.2010.05.043.
- [18] B. Zhao, M. Hu: Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells. Oncol. Lett. 6(6) (2013) 1749-1755, doi:10.3892/ol.2013.1632.
- [19] N. Oršolić, M. Kunštić, M. Kukolj, D. Odeh, D. Ančić: Natural Phenolic Acid, Product of the Honey Bee, for the Control of Oxidative Stress, Peritoneal Angiogenesis, and Tumor Growth in Mice. Molecules 25(23) (2020) 5583, doi:10.3390/molecules25235583.
- [20] S. Choubey, S. Goyal, L.R. Varughese, V. Kumar, A.K. Sharma, V. Beniwal: Probing Gallic Acid for Its Broad Spectrum Applications. Mini-Reviews Med. Chem. 18(15) (2018) 1283-1293, doi:10.2174/1389557518666180330114010.
- [21] B.H. Kroes, A.J.J. Van Den Berg, H.C. Quarles Van Ufford, H. Van Dijk, R.P. Labadie: Anti-inflammatory activity of gallic acid. Planta Med. 58(6) (1992) 499-504, doi:10.1055/s-2006-961535.
- [22] H.M. Chen et al.: Gallic acid, a major component of Toona sinensis leaf extracts, contains a ROS-mediated anti-cancer activity in human prostate cancer cells. Cancer Lett. 286(2) (2009) 161-171, doi:10.1016/j.canlet.2009.05.040.
- [23] A.A. Menazea, A.M. Ismail, N.S. Awwad, H.A. Ibrahium: Physical characterization and antibacterial activity of PVA/Chitosan matrix doped by selenium nanoparticles prepared via one-pot laser ablation route. J. Mater. Res. Technol. 9(5) (2020) 9598-9606, doi:10.1016/j.jmrt.2020.06.077.
- [24] K.V. Hiatsevich, K.S. Hileuskaya, V.V. Nikalaichuk, A.I. Ladutska, O.R. Akhmedov, N.N. Abrekova, L. You, P. Shao, M.M. Odonchimeg: Chitosan-Gallic Acid Conjugate with Enhanced Functional Properties and Synergistic Wound Healing Effect (preprint) (2024), 1-20, doi:10.21203/rs.3.rs-4982795/v1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5bb22aa-dd88-457b-8248-06e87b94a00a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.